
DRAFT SF 298
1. Report Date (dd-mm-yy)
March 1994

2. Report Type 3. Dates covered (from... to)

4. Title & subtitle
Process Technologies Method and Tool Report. Volume 1

5a. Contract or Grant #

5b. Program Element #

6. Author(s)
Allgood, B; Clough, A; Cunha, G; VanBuren, J

5c. Project #

5d. Task #

5e. Work Unit #

7. Performing Organization Name & Address 8. Performing Organization Report #

9. Sponsoring/Monitoring Agency Name & Address
Software Technology Support Center
OO-ALC/TISE
7278 4th Street
Hill AFB, UT 84056-5205

10. Monitor Acronym

11. Monitor Report #

12. Distribution/Availability Statement
Distribution Statement A: Approved for public release, distribution is unlimited.

13. Supplementary Notes

14. Abstract

19970516 153
15. Subject Terms

Security Classification of 19. Limitation
of Abstract

20. # of
Pages

21. Responsible Person
(Name and Telephone #)

Randy Wright
(801)777-9732

16. Report
Unclass

17. Abstract
Unclass

18. This Page
Unclass

ITSC

Process Technologies Method
and Tool Report

(Volume I)

March 1994

19910516 W>

Bruce Allgood
Anne Clough

Gary Cunha
James VanBuren

Process Technology Evaluation Project

Sam Godfrey
Technical Program Manager

This technical report was prepared by the

Software Technology Support Center
OgdenALC/TISE
HillAFB,UT 84056

The ideas and findings in this report should not be construed as an official Air Force

position. It is published in the interest of scientific and technical information
exchange.

This document is available through the STSC. To obtain a copy, please contact the STSC Customer Service
Office directly at: Software Technology Support Center, Attn.: Customer Service, Hill AFB, Utah 84056; 801-
777-7703 or DSN 458-7703, Fax 801-777-8069, e-mail godfreys@wpo.hill.af.mil.

Preface

This document, Volume I of the Process Technologies Report 1994, is a synopsis

of the progress of the Software Technology Support Center (STSC) in evaluating process
technologies. A software process is a set of activities, methods, practices, and
transformations that people use to develop and maintain software and associated products.1

Process technologies are defined as those technologies that can be applied to support an

organization's software process.

Volume II of this report contains detailed information on process products, user
critiques of products, and IDEF training information. To order Volume II of this report,
contact the STSC customer service department at (801)777-7703 or DSN 458-7703, fax to
(801)777-8069 or DSN 458-8069, or email to godfreys@wpo.hill.af.mil.

The targets of this report are organizations responsible for the development and
maintenance of computer software. The information is aimed at those who must make the
decisions about acquiring advanced process technology and prepare their organizations for its
effective use. The assumption is that the reader will be a software manager or practitioner
with limited knowledge in the area of software process technology, working in his/her
organization or software project in support of software process (or sub-process)

improvement.

Areas covered in the report include process assessment, process modeling, and
process enactment, where process enactment is defined as the use of a formal process
definition to guide and control the software process. Both process methods and computer
aided process engineering tools are included. The report defines process technologies,
identifies tools and software engineering environments that support process technologies,
discusses the value of emphasizing process in improving software quality, and examines the
effective use of process technologies. Volume II includes information about specific
products in the marketplace. This report also attempts to identify the future directions of
process technologies to help in planning long-range strategies.

* Paulk, M., Curtis, B., Chrissis, M.B. et. al., "Capability Maturity Model, Version 1.1," IEEE Software,
Vol. 10, No. 4, July 1993.

ill

The authors would like to thank John Brackett of the College of Engineering,
Boston University, for his careful review, comments and input to this report. SEI reviewers;
Steve Lipka from Lipka Software Engineering; Ralph Ganska from Draper Laboratory; and

Jesse Foster, Bob Hanrahan, Dennis Barney, Judi Peterson, Larry Smith and Shane Atkinson
from the Software Technology Support Center (STSC) have also provided much guidance
and have made important contributions to the report. In addition, the authors would like to
thank those who provided product critiques for this report. Their names have been withheld

to protect their privacy.

Although the material presented in this publication has been reviewed for

technical accuracy, no guarantees are made or implied. In particular, though the authors have

attempted to incorporate reviewer revisions and suggestions wherever possible, this does not
imply that the reviewers concur with the technical accuracy of the report. In addition,
product specifications are subject to change by the vendor without notice. Therefore readers
should always verify information independently and evaluate it in relationship to their needs.

IV

Contents

1 PROCESS TECHNOLOGY .. 1
1.1 The Software Process Technology Domain 2
1.2 Process Technology Categories 6

1.2.1 Process Assessment 7
1.2.2 Process Modeling 7
1.2.3 Computer Enactment 9

1.3 Process Assessment Technology... 9
1.4 Process Modeling 13

1.4.1 Structured Graphic Approaches 18
1.4.1.1 Functional Modeling 18
1.4.1.2 Functional and Behavioral Modeling 19
1.4.1.3 Functional, Behavioral, and Structural Modeling 20
1.4.1.4 Information and Data Modeling 21

1.4.2 Process Programming Approaches 22
1.4.3 System Dynamics Approaches 23
1.4.4 Petri Net Approaches 24

1.5 Process Enactment 26
1.5.1 Enactment Lessons Learned 28

2 METHODS/TOOLS/TRAINING SUPPORTING PROCESS
TECHNOLOGIES 30
2.1 Process Technology - Method/Tool/Asset Lists 30
2.2 Process Technology - Product Information Sheets 31
2.3 Process Technology - Product Critiques 32
2.4 Process Technology - IDEF Training 32

3 SELECTION AND USE OF PROCESS 33
3.1 When to Use Process Technologies 33
3.2 How to Select a Process Technology 35
3.3 How to Use Process Technology 36

3.3.1 Assessment 37
3.3.2 Modeling 38
3.3.3 Enactment 39

4 FUTURE DIRECTIONS 40

5 SUMMARY 42

Contents Continued

Appendix A - Process Technology Tool Lists 43
A.1 Process Asset List 47
A.2 Process Modeling List 49
A.3 Process Frameworks List 56
A.4 Computer Enactment Technology List 58
A.5 Process Driven Environments List 60

Appendix B - Process Technology Product Sheets (See Volume II) 65

Appendix C - Process Technology Product Critiques (See Volume II).... 67

Appendix D - Process Technology Taxonomy 71
D.l Evaluation Taxonomy for Process Technologies 72

D.l.l Functional Characteristics 73
D.1.2 Level of Tool Support 73
D.1.3 Quality Attributes 75

D.2 Assessment 78
D.3 Modeling 80
D.4 Enactment 84

Appendix E - IDEF Technology 87
E.l Case Study 88

E.l.l STSC Modeling Technology Requirements 88
E.1.2 IDEFO Method Recommendation 89
E.1.3 IDEF Family of Methods 93
E.1.4 IDEF Family Method Integration 95

E.2 IDEF Tool Survey 98
E.3 IDEF Training 100

E.3.1 IDEF Training Matrix 104
E.3.2 IDEF Training Information Forms (See Volume H) 105

Appendix F - Enactment Technology 107
F.l Frameworks Supporting Enactment 108
F.2 Customizable Enactment Environments 109
F.3 Process-Driven Enactment Approaches Ill

VI

Contents Continued

Appendix G - Bibliography 115
Table of Contents

Recommended Readings 117
I. Recommended Readings for a Process Technology Overview 118
n. Full Annotated Bibliography 120

G.l Process Assessment 120
G.2 Process Assets 124
G.3 Process Modeling - Overview and General Articles........—... 125
G.4 Process Modeling - Specific Methods and Tools 129

G.4.1 Entity Process Models/STATEMATE 129
G.4.2 GRAPPLE 130
G.4.3 IDEF/SADT 130
G.4.4 IMDE 133
G.4.5 PetriNets 134
G.4.6 Process Languages 134
G.4.7 RDD 100 137
G.4.8 SPM 137
G.4.9 SPMS 138
G.4.10 Structured Analysis Methods 138
G.4.12 VPML 140

G.5 Enactment Technology/ Process-Driven Environments - Comparative
Assessments and General Articles 141

G.6 Specific Process-Driven Environments and Enactment Technologies 145
G.6.1 Distributed System Factory (DSF) 145
G.6.2 ESF 145
G.6.3 ISTAR 146
G.6.4 KI-Shell 146
G.6.5 MARVEL 147
G.6.6 MELMAC 147
G.6.7 PREIS 148
G.6.8 SFINX 148
G.6.9 TRIAD 148
G.6.10 VSF 149

G.7 General Process Resource Materials 151

Appendix H - Glossary and Acronyms 153
H.1 Glossary 154
H.2 Acronyms 160

Appendix I - STSC Services & Information 167

Vll

Contents Continued

1.1 The Software Technology Support Center 168
1.2 STSC Technology Transition Approach 170

1.2.1 Technology Evaluation 170
1.2.2 Information Exchange 170

1.2.2.1 CrossTalk 171
1.2.2.2 Software Technology Conference 171
1.2.2.3 Technology Reports 171
1.2.2.4 Electronic Customer Services 172

1.2.3 Technology Insertion Projects 172
1.2.4 STSC Associates 172

1.3 Embedded Computer Resources Support Improvement Program (ESIP)... 173

VIM

Process Technologies Method and Tool Report

1 PROCESS TECHNOLOGY

In this era of increasingly complex software and mushrooming software

development and maintenance costs, the software engineering community needs to improve

its practices to remain competitive and to produce software that can meet complex software

requirements. Projects often overrun costs, miss deadlines, and fail to meet the requirements
of the customer. Now new software process technologies are evolving to help address these
concerns in the areas of process assessment, definition, simulation, and enactment. A
software process is a set of activities, methods, practices, and transformations that people
use to develop and maintain software and associated products.2 The quality of a product
stems, in large part, from the quality of the process used to create it. To consistently improve
products, the process used for developing them should be understood, defined, measured, and
progressively improved. Software process assessment is the act of determining the maturity3

of an organization's software process. Software process definition is the act of specifying in
some detail an organization's software process. Software process simulation is the act of
executing a software process definition. The term modeling will often be used in this report
to encompass both process definition and simulation. The term enactment denotes the use of
a formal process definition to guide and control the software process. In this report, software
process technologies will be described, their benefits outlined, and their implications
assessed. Technology maturity will be discussed and recommendations will be given for
technologies that can be effectively used today.

The report provides a survey of contributors to process technology.
Comprehensive lists, product sheets and critiques of methods and tools are included. An
annotated bibliography is available for those who want more background information about
process technologies in general or need additional information about a specific method/tool.
Guidelines are supplied for adopting process technologies and for assessing the appropriate
level of process technology for an organization. Checklists are provided to help prioritize
technology requirements and differentiate between similar methods and tools.

2 Panik, M., Curtis, B., Chrissis, M.B. et al., "Capability Maturity Model, Version 1.1," IEEE Software,
Vol. 10, No. 4, July 1993.

3 Process maturity is the extent to which a specific process is explicitly defined, managed, measured,
controlled, and effective.

Software Technology Support Center

Research for this report took place over a period of 33 months and consisted of a
thorough review of the technical literature, meetings with technology researchers/developers,
and conversations with technology users. Applicable tools and techniques were identified by
attendance at conferences and trade shows, use of tool databases4, and information from
practitioners. For each tool/technology identified, the authors spoke directly to the vendor or

researcher; product sheets - using a template provided by the authors - were filled out by
many vendors and researchers. Critiques were solicited from users of tools and technologies.
During this period, the report authors were also actively involved in using process

technologies, particularly in the areas of IDEF modeling, system dynamics modeling and

process improvement. The authors participated in process technology insertion projects

which included both modeling assistance and IDEF training.

1.1 The Software Process Technology Domain

In this section, we will discuss the software process technology domain - its
history, recent advances and current use. To help the reader focus on particular aspects of the
domain, a road map for using this document is then provided for effective use of the

information in the report.

Often we think of process improvement and/or business process redesign as new
concepts, when in fact similar ideas exist dating back to the early twentieth century. In 1927,
Walter A. Shewhart, a statistician at Bell Labs, devised a technique to bring industrial
processes into what he called "statistical control." This plan, called the Shewhart Cycle

comprises four steps: 5

1) Study a process to decide what change might improve it. (PLAN)
2) Carry out tests or make the change, preferably on a small scale. (DO)
3) Observe the effect. (CHECK)
4) Gather lessons learned (ACT)

4 Two tool databases provided significant assistance: CASEBase and Tool Finder/Plus. CASEBase is a
product of P-Cube Corporation, Brea, CA; Copyright 1990,'91'92: "CASE Product Comparison Information." Tool
Finder/Plus is a PC-based, CASE tool database with automated search capabilities available from the C/A/S/E/ Consulting
Group, Lake Oswego, Oregon.

^ This information was taken from John A. Zachman's presentation, "Business Transformation: Key to Global
Competitiveness," at the IDEF Users Group Conference Fall 1993.

Process Technologies Method and Tool Report

W. Edwards Deming, whose application of statistical control in Japanese
industries after World War II emphasized the importance of process, stated," Every activity
is a process and can be improved. Everybody belongs on a team to work on the Shewhart
cycle to address one or more specific issues." His work has led naturally to the total quality

management and process improvement initiatives.

Total Quality Management (TQM) is a philosophy that recognizes that people

want to do a good job, that all tasks/systems/processes can be made to work better, and that
those who are closest to and working with a particular process can best improve it. The
TQM process encompasses both the search for areas that need to be and can be improved,
and the implementation of improvements. The importance of process is emphasized. The
software process improvement thrust can be considered in some sense to be a subset of TQM.
Software process technologies can be used effectively in support of process improvement by
assisting in assessing the effectiveness of software processes, defining optimized processes

and automating the use of well-defined software processes.

The concepts of statistical process control have been applied in industry for many
years. Definition/simulation methods have been employed in software development.
However, applying these technologies to the software process is a relatively recent
phenomenon; software process technology is a relatively recent addition to software
technologies. In reference to software process specifically, Leon Osterweil in his paper,
"Software Processes are Software Too," advocated the use of "process programming" to
define software development processes in 1987.6 Around the same time, others in the
software community began to advocate the use of process orientation in software engineering

environments7.

6 Osterweil, Leon, "Software Processes are Software Too", Proceedings - 9th International Conference
on Software Engineering, March 1987.

7 A Software Engineering Environment (SEE) is defined as a collection of integrated tools and methods
providing automated support for the development and maintenance of software. See the STSC Software Engineering
Environment Report, Spring 1994, for a complete discussion of the software engineering environment domain.

Software Technology Support Center

Realizing that focusing on process would provide an effective mechanism for
improving quality, productivity, and predictability in software development, STARS8 began

to concentrate on process-driven development in the early 1990s. Their initial survey of
technologies in the process area showed little uniformity of approach and largely immature,
research-oriented work. During the first years, STARS process efforts were focused on
experimenting with and evaluating a number of point solutions. They were supported in this
by their major contractors IBM, Boeing, and Paramax. However, STARS' overall mission
has always been to incorporate technologies to define the software process, install the process
into an organization's work environment, and enact the process, while focusing on

monitoring and measuring the process in order to evaluate and improve it. Joint

service/STARS demonstration projects examining process-driven concepts and modern reuse

concepts within supporting software engineering environments commenced in 1993 and will

continue through 1995.

More recendy, commercial interest in process technologies has become prevalent.
Methods and tools are more robust. However, each of the three major process technology
thrusts (process assessment, process modeling, and process enactment) are at different
developmental stages. It is the authors' opinion that a number of assessment and modeling

technologies are mature enough to be applied to help software development and maintenance
efforts. A major benefit from using process technologies will come from assessing the
maturity of existing software processes and then providing a clear process definition, defined
in sufficient detail to provide a clear set of objectives that, intelligently applied and modified
to suit the problem at hand, will lead to beneficial process implementation for the target
product and organization. SEI assessment procedures are robust, well defined and accepted
by the software community. Well defined software processes exist. Working to assess and
define the software process is a realistic goal, which will position the organization for

continuous process improvement.

With enactment technologies, however, the picture is a bit more confusing. When

a process is enacted, that process has to be defined to a level of detail sufficient to allow the

8 The Software Technology for Adaptable, Reliable Systems (STARS) Program is sponsored by the
Advanced Research Projects Agency (ARPA), contracted through Air Force Electronic System Division, and involves three
cooperating prime contractors - Boeing, IBM, and Paramax - and a large number of subcontractors. The STARS goal is to
increase software productivity, reliability, and quality by synergistically integrating support for modern software
development processes and modern reuse concepts within state-of-the-art software engineering environment technology.

Process Technologies Method and Tool Report

process model to be followed in a uniform way by process users. This detailed definition
permits software tools to be invoked at the appropriate times, guidance to be given to users of
the process, project metrics to be recorded, and management reports on project status to be
generated. Of course, it is possible to accomplish all these objectives without a process-

driven computer environment to support the enactment. When a detailed definition is

followed for a process with little or no tool/environment support, the terminology "human
enactment" is used. Human enactment can be accomplished whenever a process has been
defined to the necessary level of detail.

The term "computer enactment" is used to denote the situation when a process-
driven computer environment is used to support process enactment. An organization is not

prepared for machine/computer enactment until it has a well defined process that people are
able to enact without software engineering environment support. However, even when this
level of definition is available, effective environment support for process enactment may not
yet be developed to the required level of sophistication, nor has anybody proved the cost

effectiveness of computer enactment except for very small pieces of the software process.
However, continuous monitoring and evaluation of process-driven environments, a course of
action begun in this report, will allow us to determine their value as research, development,

and pilot use of such environments increases.

A great deal of information is included in this report. Therefore, a road map of
how to effectively use it may be helpful. The sections that are relevant depend on an
organization's process maturity. An organization just beginning to address process
improvement, should focus on:

Section 1.3: Assessment Technology
Appendix D.2: Assessment Method Checklist
Appendix G.l (Bibliography): Process Assessment

Once process improvement activities begin, the parts of the report dealing with
process modeling will be relevant. Process definitions can be used to support the
implementation of a process at all maturity levels. The sections focusing on process

modeling are:

Software Technology Support Center

Section 1.4: Process Modeling
Appendix A.2: Process Modeling List
Appendix B: Process Technology Product Sheets (See Volume II)
Appendix C: Process Technology Product Critiques (See Volume II)

Appendix D.3: Modeling Checklist
Appendix E: IDEF Technology
Appendix G.3 (Bibliography): Process Modeling - Overview and General Articles
Appendix G.4 (Bibliography): Process Modeling - Specific Methods and Tools

The sections of the report on process enactment, particularly computer-assisted

enactment, may not address immediate process concerns. It is the authors' opinion that only

the most mature organizations have an optimized process defined to the detailed level
necessary to invest resources in computer enactment. However, the following sections on
computer enactment will serve as an introduction to this area and a summary of state-of-the-
art products and research for computer-assisted enactment:

Section 1.5: Computer Enactment
Appendix A.3: Process Frameworks List
Appendix A.4: Computer Enactment Technology List
Appendix A.5: Process Driven Environment List

Appendix B: Process Technology Product Sheets (See Volume II)
Appendix C: Process Technology Product Critiques (See Volume II)
Appendix D.4: Enactment Software Engineering Environment (SEE) Checklist
Appendix G.5 (Bibliography): Process-Driven Environment - Comparative

Assessments and General Articles
Appendix G.6 (Bibliography): Specific Process-Driven Environment and

Enactment Technologies

1.2 Process Technology Categories

Process technologies can be classified in a number of useful ways. The STSC

uses three categories to differentiate between process technology areas. They are:

Process Technologies Method and Tool Report

• Process Assessment

• Process Modeling9

• Computer Enactment

This taxonomy has proven useful for aggregating like technologies and allowing

the reader to concentrate on all related technologies in a technology area.

Another category that could be discussed when looking at process technologies is

process measurement. Particularly when using process definitions to improve an

organization's software process, it is important to measure the current process and then
measure the "improved" process to see if a proposed change is a step forward or a step
backward. Measurement plays a very central role in process technology, driving the
evolution and improvement of process definitions and software processes. It guides decision-
making during process definition and provides evidence to evaluate which process steps are
working effectively and which are not, leading to process improvement.10 However, due to
the amount of research necessary to produce a first report covering process assessment,
modeling and enactment, process measurement as a separate category is not discussed in this
report. It will be a candidate for inclusion in the next edition of this report.

1.2.1 Process Assessment

An organization first needs to evaluate, or assess, the maturity of the software

process already in place. Knowing the maturity level of its development and maintenance
process or processes will allow an organization to concentrate on improvements that attack
immediate problems. Assessment technologies will be discussed in Section 1.3.

1.2.2 Process Modeling

In order to improve the software process, a defined software process is necessary.
Richard Drake from STARS/IBM describes a defined process as one that is documented,
taught, and applied. A defined process implies that, for some application domain, everyone

* An encompassing term that includes both process definition and simulation.

10 Hal Hart, "Process Measurement, " STARS *91

L

Software Technology Support Center

uses the same software process and a description of that process exists. Often, the process
description is a textual description that is available to all software practitioners - for example,
in an organization's procedures manual. A defined process provides a basis for examining
and improving the software process, predictability in cost and schedule, better understanding
of roles and relationships, guidance of software professionals through choices in an orderly

way, and a consistent working framework that allows staff to move easily from one project to

another. The very act of precisely defining the process being used by an organization usually

reveals anomalies in the process and leads to immediate improvements.

Effective definition methods and notations can support process definition. An

industry-wide standard process definition method and notation does not exist. Process
notations used to define the software process vary in formality from free-form English

language descriptions at one end of the spectrum to formal machine-executable definitions at
the other. Since effective process notation is necessary for successful process definition,
research and development of notations that allow adequate precision is an important and
growing technological priority. Our compilations of modeling technologies will include a
number of these research efforts as well as commercially available, tool-supported methods.

Process definitions become even more powerful when they allow the simulation

of the software process. The ability to simulate the process is a characteristic of some
process definition approaches. In fact, the formality and strength of a definition technology
rests, at least in part, on its ability to support simulation. Simulation allows those defining
the process to test the definition for errors and completeness. "What-if' analyses can be
made available to managers who wish to test the effect of alternative strategies on the overall
process. In addition, formal analysis can be used to detect weaknesses and bottlenecks in the
software process itself. Effective simulation technology (for example: Petri nets, real-time
structured analysis, real-time systems specification and design, system dynamics) and tool
support are widely available today, though not widely used for software process simulation.

The term process modeling will be used in this report to encompass both process

definition and simulation. Process modeling will be discussed in more detail in section 1.4,

the various IDEF modeling methodologies in Appendix E.

Process Technologies Method and Tool Report

1.2.3 Computer Enactment

Ideally, in the vision of software technologists, a precisely defined software

process definition will ultimately be used in a computer aided support environment to invoke

software tools at appropriate times, determine compliance with the process model, give

guidance to the users, record project metrics, keep management informed of the status of a

project, and execute any automatable activities in the process model. When a formal process
definition is used to guide and control the software process in this way, we say that the
definition has become enacted. However, given the lack of fully realized process-driven
environments, installing totally effective environment support for enactment is probably not

possible at this time.

Computer enactment will be further discussed in Section 1.5, and specific

products supporting computer enactment presented in Appendix F.

1.3 Process Assessment Technology

Software process assessments are used by organizations to help identify the status

of their software process and to identify areas to address for process improvement. A
software process assessment requires a review of the software development process for key
projects in an organization. An assessment identifies an organization's key strengths and
weaknesses and helps the organization establish effective improvement plans. There are a

variety of approaches that can be taken to assess the maturity of a software process.
However, the purpose of this document is not to evaluate assessment technologies but to
introduce the need for process assessment and provide a pointer to the Software Engineering
Institute (SEI) for DoD customers, since the most widely known and used approach,
particularly in the DoD community, is the SEI assessment process.

'Quality Management and Quality Assurance Standards' (ISO 9000 series
standards), developed by the International Organization for Standardization (ISO) in 1987,
are a set of quality assurance standards that can be applied to any business. The ISO's intent

is to keep the need for onsite vendor/contractor visits to examine their quality assurance
methods to a minimum by creating standards for products crossing international borders and
within the European Community. This assessment method has been adopted by over 60
countries, but remains primarily outside the DoD realm. These standards describe the steps

Software Technology Support Center

necessary to achieve an ISO 9000 certification, and were designed to address several
business realms including manufacturing, service, software development, supply, and
maintenance. In comparison, the CMM identifies the characteristics of an organization at a

specific level of maturity, and was designed specifically for software developers. While
some people working with the CMM also help in improving the ISO 9000 series, the overlap

between the two methods in not clear. n

Process maturity is the extent to which a specific process is explicitly defined,
managed, measured, controlled, and effective. The Software Engineering Institute (SEI) at
Carnegie Mellon University has been a leader in the area of process assessment, defining five

distinct maturity levels for categorizing software processes.12 At Level 1 (Initial), the

software process is unpredictable with respect to cost, schedule and quality. Success largely
depends on individual effort. At Level 2 (Repeatable), basic product and process controls are
in place. This includes project management (planning and tracking), process and product
assurance (SQA), and change management (requirements management and software
configuration management). The necessary process discipline is in place to repeat earlier
successes on projects with similar applications. At Level 3 (Defined), the software process
for both management and engineering activities is documented, standardized, and integrated
into a standard software process for the organization. All projects use an approved, tailored
version of the organization's standard software process for development and maintenance of
software. At Level 4 (Managed), detailed measures of the software process and product
quality are collected. Both the software process and products are quantitatively understood

and controlled. Data is available to establish improvement priorities and to support tool and
technology investment. At Level 5 (Optimizing), continuous process improvement is
enabled by quantitative feedback from the process and by piloting innovative ideas and
technologies.13 When an organization uses an SEI assessment process to measure its process
maturity level, specific steps are identified that enable the organization to improve its process
and advance from one maturity level to another. Using this approach, an organization can

11 Information on the ISO 9000 series was taken from Mark Dawood's article "It's Time For ISO 9000",
published in the March 1994 issue of CrossTalk.

12 Throughout this report the term "Level X" will be used to refer to "SEI CMM Level X."

13 The five maturity levels are explained more fully by Watts Humphrey in his book, "Managing the Software
Process," Addison-Wesley Publishing Company, Inc., 1989, and in "Capability Maturity Model for Software, Version 1.1,"
Technical Report CMU/SEI-93-TR-24, Software Engineering Institute, February 1993. The short descriptions above are
from the technical report.

10

Process Technologies Method and Tool Report

systematically move from "initial" processes to "repeatable," "defined," "measured," and

finally "optimized" processes.14

The SEI process assessment has proved to be an effective way for an organization
to identify what must be done to improve its software process. Assessors are trained to
evaluate strengths and weaknesses in areas such as project planning, project management,
configuration management, quality assurance, standards and procedures, training, process

focus, and peer reviews/testing. An assessment determines what areas need to be improved

and establishes priorities for the improvement effort. Project management is often the first
area an organization needs to address. Concentrating on addressing weaknesses, in the
prioritized way provided by the assessment, focuses the improvement effort in ways that can
realize immediate payoff. However, more specific assistance from the SEI on how to address
the weaknesses would definitely be desirable.

The SEI's process assessment procedure, with its maturity levels, improvement

steps, emphasis on an action plan for improvement, concept of software engineering process
groups (SEPG)15, and process training, is rapidly becoming an industry/DoD standard. Some

government agencies are now using a closely related procedure called the Software
Capability Evaluation (SCE) to judge how capable private companies are at developing
software. The SEI has done a thorough job in training people to apply the assessment
procedure. They have conducted assessments, measured results and addressed shortcomings
in the original procedures with an updated version of both the assessment procedure and the
corresponding maturity levels. While the process assessment procedure is pretty stable now
with infrequent changes and updates, it continues to be reviewed by a wide range of industry

reviewers and will continue to be revised and updated as necessary. Though some critics
have attacked the SEI approach, organizations have reported (and measured) a significant
gain in the effectiveness of their software process after implementing SEI's recommended

-^ Mr. Lloyd K. Mosemann's goal to achieve a maturity level 3 by 1998 for Central Design Activities /
Software Design Activities and weapon systems Software Support Activities.

15 The Software Engineering Process Group (SEPG) acts as the focal point of a software engineering process
improvement program. Working with managers and engineers from software development organizations, the SEPG tracks,
screens, installs, and evaluates new methods and technology that can improve the software engineering capability of an
organization.

11

Software Technology Support Center

action plan.16 Organizations can perform self-assessments (ideally after being trained by the

SEI) or the Software Engineering Institute can be contacted for a list of Software Process

Assessment Associates,17 which are companies trained, authorized and licensed by the SEI to

perform software assessments. It should be recognized that assessments can be costly,

whether they are done by an internal team or by an external assessment team.

Within the Air Force, XPSP (formerly TIC) is a group trained by the SEI to carry

out formal software process assessments of Air Force organizations (not project teams). The

Air Force Communication Command (AFCC) at Scott AFB is the primary source for these

trained assessors. Their effort supports Mr. Lloyd K. Mosemann's goal "to achieve a

maturity level 3 (defined process) by 1998 for Central Design Activities / Software Design

Activities (CDA / SDA) and weapon systems Software Support Activities (SSA)."18 Mr.

Mosemann is the Deputy Assistant Secretary of the Air Force for communications,

computers, and support systems in the office of the Assistant Secretary for Acquisition.

An alternative approach to process assessment, the Model-Based Process

Assessment (MBPA), has been proposed by Clement McGowan.19 This approach combines

process modeling with process assessment. The MBPA advocates creating a model of a

process and using this model as the basis for assessing a process. McGowan maintains that

the modeling approach will often lead to process improvements that might have been missed

using the SEI methodology. Major points of difference with the SEI approach are:

• MBPAs can be applied to any process, whereas the SEI approach is concerned

solely with software process.

• An SEI assessment reviews multiple projects within an organization, while an

MBPA focuses on a single process/project.

16 See Humphrey, W., Snyder, T.R., and Willis, R.R., "Software Process Improvement at Hughes Aircraft,"
IEEE Software, July 1991; Dion, R. "Cost of Quality as a Measure of Process Improvement," 1992 SEI Symposium; OC-
ALC/LAS white paper, Oklahoma City Air Logistics Center, Tinker AFB.

17 For information on Software Process Assessment Associates, SEI training and other SEI offerings, contact
Software Engineering Institute, ATTN: Customer Relations, Carnegie Mellon University, Pittsburgh, PA 15213-3890;
telephone (412) 268-5800; internet: customer-relations@sei.cmu.edu.

18 This quote is taken from Lloyd Mosemann's memorandum, "Policy on Software Maturity Assessment
Program," September 1991.

19 McGowan, C.L., and Bohner, S.A., "Model Based Process Assessments," Proceedings of the 15th
International Conference on Software Engineering, pp. 202-211, Baltimore, Maryland, May 1993.

12

Process Technologies Method and Tool Report

• MBPAs do not have a nominal reference model (like the CMM).
• Predefined key process areas largely determine the resulting recommendations

of an SEI assessment, whereas MBPAs recommendations will come directly

from studying the "as-is" model of how a process is accomplished.
• MBPAs take, on average, twice the staff labor of an SEI assessment; in an

MBPA, assessors often help implement the changes that they recommend.

Despite the extra effort such an alternative would require, McGowan believes that

"a process model (with true consensus on its contents) is a meeting ground for process and
project staff to work jointly on improvements," and is therefore preferable to attempting to
implement improvements where consensus has not been achieved.

However, it could be argued that a process assessment by definition is a
comparison of a process to some reference model. By this definition, the process modeling
and analysis found in the MBPA is not process assessment. It is process modeling and
analysis - a classic systems analysis technique. MBPAs do not characterize process maturity.
It is also true that the SEI process improvement approach (as contrasted to the SEI
assessment approach), as documented in the SEPG guide20, already includes both process
modeling and analysis. Therefore, MBPAs can be considered a subset of the SEI process
improvement approach and therefore not an alternative method but a complementary
improvement technique. In fact, MBPA is increasingly being understood and welcomed as a

complementary technique that has proven useful in a number of process improvement efforts.

1.4 Process Modeling

In general, a process model adequately models a particular process if it can be
used to answer questions about the process to a specified tolerance. A great variety of
process definition and simulation technologies are being used to do this. Each has strengths
for answering a unique subset of questions about the process being defined. Any modeling
technology must adequately support both the developer and the user (or reader) of the
completed model. Therefore modeling technologies should be examined from the point of

20 Fowler, P, Rifkin, S., "Software Engineering Process Group Guide," Technical Report CMU/SEI-90-TR-24,
Software Engineering Institute, September 1990.

13

Software Technology Support Center

view of the questions that can be answered when both a developer and a reader use a model.
This approach allows a more informed decision to be made when choosing the modeling
technique for an organization. A typical set of process-related questions follows:

A Model Reader's Questions: A model reader will look to the process model to

answer basic questions about the process. The extent to which these questions can be

answered (which rests heavily on the understandability and usability of the model) will be a

strong indicator of a model's value to the user ofthat model.

(1) What is the scope of the model?

- What questions is it designed to answer?
- What is the context for the model?

(2) What are the process steps and their results?

- What are the functions/activities that need to be performed?
- What conditions must be satisfied before an activity can take place?
- What is the sequence of activities?
- What are the rules for feedback or iteration?
- What are the constraints on the process?

(3) What are states of objects produced by or used in performing the process?

- What activities transform objects from one state to another?

(4) Who/what implements the activities?

- What is the mapping of process steps to responsible individuals? To
roles? To organizations? To tools?

- Where are the activities implemented?

(5) How can I manage the process?

- What activities can take place concurrently?
- What are the critical path(s)?
- What resources are required for each activity?
- Where is there resource contention?

(6) Why does the process work the way it does?

A Model Developer's Questions: Besides addressing the model reader's

questions, the modeling technique must also meet the requirements of the model builder, as

reflected in the following questions.

14

Process Technologies Method and Tool Report

(1) What do I want to model, and why do I want to model it?

(2) What notation can effectively represent the model?

(3) How difficult is it to use the modeling technology (notation, method, tool
support)? How difficult is it to understand the resulting model? Is the
technology more suited to analysis and design (of the process) than
presentation, and if so, how can the results be presented?

(4) How widespread is the use of this technology?

(5) How can the model be used?

- Can the model be analyzed for completeness, correctness, and consistency?
- Can the model be simulated?
- Can I use the model for enactment in a software engineering environment?
- Is tool support needed to view/work with the model?

It is important to know what the modeling objectives are before modeling.
Understanding the objectives helps define the model's content and defines the end-point for
the work. It also circumscribes the set of questions the reader will be able to answer. This is
the most important issue a modeler has to address.

The actual process that is being modeled can be viewed from a number of
perspectives, such as the functional (what are the process steps?), the organizational
(who/what performs each function?), the behavioral (what are the process states?), and the
informational perspective (what is the information structure and what are the information
relationships?). Figure l-l21 shows why a process being modeled needs to integrate a
number of perspectives by comparing the definition of a process to a full view of a person
working at a computer. You would not have a full view if you could only see from the top,
from one side or the other, or from the back. All perspectives need to be taken into account
to get a true picture.

21 Figure 1-1 is taken from the article by Curtis, Kellner and Over, "Process Modeling," in the
Communications of the ACM, Vol. 35, No. 9, September, 1992.

15

Software Technology Support Center

TOP PERSPECTIVE
(e.g., functional)

Left Perspective
(e.g., behavioral)

Back Perspective
(e.g., informational)

Figure 1-1. Process Perspectives

While it may seem desirable to use a modeling approach that takes all
perspectives into account, most modeling approaches emphasize only one or two of these
views, which provides an incomplete understanding of the process being modeled. Other
perspectives are left out or are added in an incomplete way. Though there are a number of
ways that combinations of perspectives can be integrated in a modeling method, no method
or tool incorporates all four viewpoints in an integrated fashion.22 Some argue that it may
not be possible to effectively model all perspectives with a single method. This isn't unusual
and should not be a surprise. A number of disciplines use multiple models, each of which
focuses on a particular perspective. For process modeling, multiple models may also be

22 This statement may need to be revised in the future. Visual Process Modeling Language (VPML),
developed by ISSI and supported by their commercially available tool, ProEditor, is designed to address all four
perspectives, although the support for some perspectives is minimal at present. VPML and ProEditor will become a part of
the Process-Oriented Software Life Cycle Support Environment (ProSLCSE), a process-centered software engineering
environment that includes editors and enactment tools.

16

Process Technologies Method and Tool Report

needed at times. But it is important to note that the perspectives emphasized by a particular
approach may provide the desired understanding and be sufficient for the questions the model

is designed to answer. What perspective(s) are emphasized by particular modeling methods
can be a very important consideration when choosing a modeling approach. Table 1-1 shows
the perspectives that can be modeled using the methods that will be discussed in this report.

Functional Behavioral Organizational Informational

IDEFO X X

IDEF1/IDEF1X X

IDEF3 X

Structural Analysis X

Real-Time Structured
Analysis

X X

Entity Process Modeling X X X

Process Programming X

Petri Nets X X X

System Dynamics X X

Table 1-1. Process Perspectives Supported by Modeling Methods

In the area of software process modeling, there is no single, standard, widely
accepted approach. Many modeling techniques can be used for process modeling. A great
variety of process definition and simulation technologies, each of which has strengths for
answering a unique subset of questions about the process, is being used. Some technologies
are clearly at the research stage and tool support is often lacking or rudimentary. However,

other technologies (for example, SADT/EDEFO, Petri nets, real-time systems specification
and design, and system dynamics, all of which will be defined and discussed in this section)
are relatively mature in our opinion and have good tool support

In section 1.4 subsections, we will look at the major process modeling approaches
(structured graphics approaches, process programming approaches, systems dynamics, and
Petri net modeling) being developed and/or used today from the perspective of the modeler
and also from the perspective of the "reader" of the model. We will also consider the views

17

Software Technology Support Center

(functional, behavioral, organizational and/or informational) supported by the major
modeling methods. The bibliography (Appendix G) contains additional information on a

great variety of modeling techniques.

1.4.1 Structured Graphic Approaches

We have found the following four categories of structured graphic approaches

useful in recognizing differences in methodology:

1) Model the software development functions performed.
2) Model both functions performed and behavior (i.e., model process states).

3) Model functions performed, behavior, and who/what performs each system

function.
4) Model information structure and information relationships in the process.

IDEFO is an example of a technology that falls into the first category, real-time
structured analysis falls into the second category, entity process modeling falls into the third,
and IDEF1/IDEF1X falls into the fourth. We will look at each separately.

1.4.1.1 Functional Modeling

The first category of structured graphic approaches, which includes structured

analysis methods, Structured Analysis and Design Technique (SADT) (which is a structured

analysis method), and Integrated DEFinition method (IDEFO) (which is a subset of SADT
and the most popular SADT-type method), emphasizes the functional perspective and often
employs a graphical hierarchical representation and diagrams which are similar to data flow
diagrams. Using functional modeling, process steps can be clearly identified. The use of a
data flow diagramming approach for process definition also offers the understandability of
such diagrams, thus facilitating communication and information exchange.

If we look at IDEFO as an example of this approach, so chosen because it is the
most widely used of this class of approaches for process modeling, we can note the following
strengths and weaknesses. In addition to the functional information noted above, IDEFO
diagrams can be broadened to indicate organizational information. In general, however,
IDEFO diagrams provide limited information; they are often imprecise about details and

vague about the details of concurrency, resource conflict, timing, and state-oriented behavior.

18

Process Technologies Method and Tool Report

As a result, models must be extended to allow simulation or enactment. Nevertheless,
understandability of the model can make this a favorite method from a reader's point of view
when compared to models that are more complete but more complex. This method is
particularly useful in identifying missing process steps. For a process-immature
organization, this is often the biggest improvement opportunity. It is the authors' opinion that
the learning curve for readers of IDEFO models is not steep and that training requirements for

readers are minimal.

From the modeler's perspective, good tool support for these methods is available.

In addition, they have been successfully used and are in widespread use.23 Because of this
wide use, method and tool obsolescence will not be as much of a concern as with other less
widely used methods. Training is readily available. Standard notation, hierarchical
structuring, effective rules for composition/decomposition, support for incremental
development, and a reasonable learning curve are features of structured graphic approaches.
Most models cannot be simulated or enacted due to the necessity of capturing more
information than the notation supports; however, in a number of instances, extended notation

or a bridge from structured graphic models to simulation models is available. All in all, the

large community of users, the familiarity of data flow diagrams and mature tool support
available for structured analysis make functional modeling methods strong contenders when
choosing a process definition technology.

A more detailed discussion of IDEFO modeling, training and tools can be found
in Appendix E. More detailed tool information for other functional modeling methods is
available in the tool lists in Appendix A.

1.4.1.2 Functional and Behavioral Modeling

Real-time structured analysis techniques add a state-oriented notation to data flow
models, which allows behavior to be represented. Therefore, real-time structured analysis
models, in addition to answering the questions that functional methods answer, also answer

23 IDEFO has seen extensive use worldwide. It has been used in such areas as hardware and software
development, telecommunications, manufacturing, command and control, and real-time banking. IDEFO has been used
extensively in the commercial marketplace for business process redesign. It is also extensively used by the government
market for business case analysis. The DoD Corporate Information Management Program (CIM) is using IDEFO. In
addition to the DoD CIM program, IDEFO is a functional modeling standard for the U.S. Air Force manufacturing programs
(MANTECH), the CALS Concurrent Engineering Initiative, the DoD Industrial Modernization Incentive Program (IMIP),
and the Advanced Manufacturing Program (CIM-OSA).

19

Software Technology Support Center

questions focusing on behavioral issues (e.g., What conditions cause objects to transition

from one state to another?). In general, such techniques do not have a mechanism to indicate

organizational perspective in their models. However, some structured analysis techniques do

support extensions that allow the representation of "where" a function is performed.

Tool support is mature in our opinion. Points made for functional modeling in

terms of answering the modeler's questions still hold for real-time structured analysis. In

addition, the information captured in the real-time structured analysis notation provides the

basis for simulation and enactment of the model.

However, despite its added functionality, real-time structured analysis has not

been widely used for process modeling.

1.4.1.3 Functional, Behavioral, and Structural Modeling

A third structured graphical approach to software process definition offers a set of

three distinct but interrelated viewpoints that can be used to define a software process: the

functional view (often represented by data flow diagrams), the behavioral view (often

represented by state transition notation), and the structural/organizational view (showing

which elements of the process are performed by different entities). Such an approach has the

necessary rigor and completeness to allow a software process to be well represented from

distinct viewpoints.

These views can be represented by multiple tools. A single tool implementing all

three views is STATEMATE24, a tool for real-time systems specification and design based on

a graphical language (STATECHARTS) and method developed by David Harel. In

STATEMATE, the functional view is represented by enhanced data flow diagrams, the

behavioral view is represented by an improved variety of state transition diagrams, and the

organizational view is represented by block diagrams. A STATEMATE model can be

analyzed for logical consistency and logical completeness. Structured model building

approaches that allow details to be added to the model incrementally are also well supported.

However, in the authors' opinion, the modeling technique has a steep learning curve and the

24 STATEMATE is a trademark of i-Logix, Inc., Burlington, MA.

20

Process Technologies Method and Tool Report

resulting process definition is sometimes difficult to understand. STATEMATE has been

used for process modeling by the process modeling research community. Though

STATEMATE is being used by some organizations for process modeling25, it is the authors'

observation that STATEMATE has not been accepted or widely adopted for process
definition by the software development community, despite the power of its approach.

1.4.1.4 Information and Data Modeling

IDEF1 and IDEF1X both provide a structured graphical means with which to
design, analyze, and communicate the information and data portions of a system. EDEF1,
developed in 1981, allows the modeler to concentrate on information collected, stored, and

managed by real world objects; a high-level system information entity can be modeled as a
composite of logical smaller groupings of information in its subsystems. It is often used to
specify what information is currently managed, and what information will be managed in the
"TO-BE" model. IDEF1X, introduced in 1985, initially focused on providing modeling
support for the design of database systems, and therefore is not suited well for analysis of the
"AS-IS" method. Nevertheless, IDEF1X has proved to be more expressive than IDEF1 even
for non-database applications. Both IDEF1 and IDEF1X have been used widely, have
mature tool support, and have been extremely useful in their intended application areas.
However, IDEF1 is beginning to be used by fewer and fewer modelers. BDEF1X has more
support from vendors. Consequently, IDEF1X is emerging as the IDEF modeling method of

choice for informational modeling.

If a single method for process modeling is desired, neither DDEF1 nor IDEF1X is

an appropriate method for this purpose. However, if other process modeling methods do not
give an informational perspective and this is needed, a supplemental model using BDEF1X
can be helpful to more precisely define the information discovered in an IDEFO (or other
process) model. Even this use of the IDEF IX model can be problematical, however. Since it
is most useful for logical database design following a decision to implement using a
relational database, the modeler sometimes has to violate some rules if he wants to use the
model for process information structure and to support analysis from the user perspective. In
addition, the lack of tool support for the inter-relationship of process modeling views can be
a problem.

25 Rockwell, Naval Air Warfare Center (NAWC), and IBM Canada are three organizations currently using
STATEMATE for process modeling.

21

Software. Technology Support Center

1.4.2 Process Programming Approaches

Process programming languages, in which a software process is represented in the

form of a program, using prograrnming-like languages, notations, and formalisms, have been

developed specifically for the description of software processes. In general, the goal of the

process language approach is to support computer enactment. Some languages are

essentially procedural in approach; others are rule-based. In procedural approaches, a

process is broken down into a series of steps. Procedural process languages are well suited

for describing control structure, hierarchy, interfaces, and for specifying the "steps" that,

taken collectively, constitute a software process. In rule-based approaches, process steps are

described by rules with pre- and post-conditions. Rule-based approaches are well suited for

specifying what conditions must be satisfied before a process step can take place, as well as

those conditions that must be met before that process step completes. Many process

programming languages are being used, many in a research mode. Since no standard process

programming language exists, tool support for process approaches is limited, In general,

process programming is neither widely used nor considered a mature technology by software

process technologists.

Process programs are likely to be inherently complex. Since the goal of the

process language approach is to support computer enactment, a process language is not

primarily designed for human communication. This approach is not intended for, nor suited

to, ease of communication. Therefore, lack of understandability of the resulting model will

often prove to be a major drawback from the model reader's perspective. Though process

programming approaches are sufficiently flexible to model software products and processes

at any desired level of detail, process programming provides less support than other modeling

techniques for process improvement. In addition, since process programming often takes an

essentially activity-based or functional view in which the process description must be

followed exactly step-by-step, some fear that this may constrain the free/opportunistic

decision making that is a part of any realistic software development process.

From the modeler's perspective, working with a process programming language

will require familiarity with its notation and semantics. The learning curve for a process

language should be roughly equivalent to the learning curve of a new programming language.

As with contemporary high-level programming languages, it should be possible to follow a

structured approach using a procedural process language. With essentially procedural-type

languages, it should be possible to incrementally build a model in the same way that a

22

Process Technologies Method and Tool Report

software application can be built incrementally. In addition, it should be possible to exploit

reuse when using a process language, as well as make possible the simulation and enactment
of the model. However, no standard process programming language has emerged from

research efforts. With rule-based languages, a further drawback has proved to be the lack of

function decomposition and overall structure.

Both procedural and rule-based languages have been chosen as the definition
method of choice by some experimental process-driven Software Engineering Environments
(SEEs). Procedural languages such as APPL/A in the Arcadia project, CML in the TRIAD
project at Ohio State University, and Gist in the System Factory Project at the University of
Southern California are representative examples. Rule-based languages are used in the

MARVEL and MELMAC environments.

1.4.3 System Dynamics Approaches

Systems dynamics, developed at the MIT Sloan School of Management by Jay
Forrester, applies the principles and techniques of feedback control systems to managerial,
organizational, and socioeconomic systems. System dynamics models describe systems of
variables and delays. Some variable values are derived from a calculation, other variable
values accumulate over time. System dynamics modeling methods are widely used for
systems definition in such areas as economics, ecology, avionics, and navigation. It has been
found that the feedback principles of system dynamics help structure and clarify the complex
web of dynamically interacting activities. Applied to the software process, this approach
allows great fidelity in modeling processes, making possible both more complicated models
and models of more complex systems. Modeling process steps with an emphasis on feedback
in the system allows the modeler to accurately model the rework realities in the software
process. The technology is also particularly strong in using feedback to accurately model
dynamic behavior and interactions between activities. A primary benefit when using systems
dynamics models is increased understanding of the dynamic relationships within a system.
The ability to use system dynamics models for "what if scenarios is a strength of the
technology. However, no formal analysis techniques exist for system dynamics models, and
complexity and understandability of very large models can be a drawback of this approach.

Tool support, both graphical and language-driven, for system dynamics modeling

is quite mature in the authors' opinion. There are a number of notations used with no formal

23

Software Technology Support Center

drive for standardization. Commonly used notations are only standard in the sense that most
system dynamics modelers use tools developed by a small group of vendors26 and hence
adopt their notation. Systems dynamics modeling techniques can be learned relatively

quickly but this implies an understanding of the principles and techniques of systems
dynamics that is not necessarily straightforward. It is also true that ease of modeling does not
always translate into ease of understanding the resulting model. Models can be developed
incrementally. However, there is a lack of functional decomposition. The absence of
effective structuring and decomposition techniques causes the models to spread rather than
decompose. There is no direct expression of state behavior.

Simulation of the model provides a vehicle for controlled experimentation in the

area of software development. Since system dynamics models are good at describing the
properties of systems, a system dynamics model can show the effects of various policy
decisions in a way that no other model can. The approach can help in understanding the
dynamics of a system but, given the reservations above, it may not provide the optimal way
to describe a system. The technique of using two process models, a system dynamics model

and a functional process model, can be very helpful, particularly in studying the effect of
policy decisions on the process. No efforts have been made to use system dynamics models
for process enactment nor is such an approach likely to be successful for enactment.

1.4.4 Petri Net Approaches

Petri net modeling techniques use a mathematically-based graphical notation
(Petri nets) for modeling dynamic and distributed software process activities. Adapted to the
requirements of software process modeling, these techniques apply formality and rigor to the
task of process definition. Petri net analysis techniques can also be used to validate the
model and to verify software process model properties such as reachability. The formalism
provided by a Petri net model can contribute to consistent and precise understanding of the
software process, enable automated support and open up ways to automate well-understood
parts of the software process. Though the majority of questions that a user of a model might
want to ask of a process model could be answered using a Petri net model, a great deal of

■"> STELLA (or its companion tool, IThink) are the most commonly used graphical-based modeling tools for
system dynamics. Tools are marketed by High Performance Systems, Hanover, NH.

DYNAMO is the most commonly used language-based modeling tool for system dynamics. It is marketed
by Pugh Roberts, Associates, Cambridge, MA.

24

Process Technologies Method and Tool Report

training is necessary to bring the user to the level of understanding necessary to interpret the
model. Therefore, lack of understandability is a concern with Petri net technology.

From the modeler's perspective, Petri net modeling and analysis is well supported
by mature tools, such as Design/CPN,27 which provide automated simulation of the model.
Other tools, such as Process Weaver, use Petri nets in their implementation while providing a

more accessible interface to the modeler. When the modeler must use Petri nets directly to
construct the model, the learning curve necessary to become an accomplished Petri net
modeler is steep. Models of even simple systems tend to become very complex very quickly.

Therefore, modeling complex systems using Petri nets can be difficult. Details can be added
in an incremental manner to Petri net models; however, the use of structuring
techniques/modularization and reusable net components has only recently been introduced by
researchers. In addition, a number of versions of Petri net notation are being used.
Nevertheless, given the power of Petri net technology for fully defining processes, Petri net
models are beginning to be used in the United States and are already used widely for
software process modeling and computer enactment in Europe.

Recently, modelers working with process definition methods that do not allow the
completeness in process definition that more formal techniques (such as Petri nets) offer have
begun to use bridges to the more formal technologies. These bridges permit the modeling of
the software process using a notation and technology that is accessible and understandable,
thereby facilitating communication with model readers. This model can be annotated to
reflect aspects of the process that cannot be modeled with the more limited notation. Then,
when the modeler is satisfied that the model accurately reflects the software process, he/she
can transfer the model to the more formal technology, simultaneously adding the details
noted in annotations. As an example, Meta Software provides a translator that allows IDEFO
models generated using their Design/IDEFO tool to be translated to a Petri net framework.
Adding the necessary detail (detail that cannot be formally provided in IDEFO models except
in the form of comments) will allow the IDEFO model to be simulated using Petri net

technology.

27 Design/CPN is a trademark of Meta Software Corporation, Cambridge, MA.

25

Software Technology Support Center

1.5 Process Enactment28

Once a software process is formally defined, computer enactment provides

automated support for the process definition. For example, the definition can be used in a
computer aided support environment to invoke software tools at appropriate times, enforce
the process model, give guidance to software developers, record project metrics, keep
management informed of the status of a project, and execute automatable activities in the
process model. Certainly, this could produce significant corporate benefits. For technology
insertion, computer enactment could facilitate the introduction of new technology by
supporting the training, piloting and evolving of new processes. In the area of standards
enforcement, computer enactment could enforce both process standards (inspection

procedures, configuration management, etc.) and product standards (complexity, structure,
etc.). Metrics could be automatically collected for both process (repeat cycles, bottlenecks,
time spent in each process phase, etc.) and product (errors, product statistics, etc.). Project
management information (schedule updates, resource projections, etc.) could be
automatically generated. At its best, task automation provided by computer enactment will
free software developers to concentrate on the creative aspects of developing systems.29

Computer enactment in a process-driven environment could operate in the

following way: In the morning the software engineer logs into the environment. A screen
shows the tasks that are available for the day. The engineer chooses a task and the task
context is brought up - the status of the task, any changes that have occurred since the last
work session, any messages from other members of the team. After choosing a part of the
task to work on, tools are automatically invoked and the correct documents/work made
available. Guidance on the process to be used is provided. If the engineer attempts to depart
from the process or project standards, this will not be allowed by the environment. Metrics
(exactly which metrics are determined by the process engineer who has defined and enacted
the process) are gathered automatically on the project by the environment as the project
progresses. Project management information is generated automatically. Any automatable
parts of the process are executed automatically by the environment. Such an environment

28 Section 1.5 will discuss "computer enactment " - as distinguished from "human enactment."

29 Myles, D.T., "Automated Software Process Enactment," Proceedings from the Fifth Annual Software
Technology Conference: Software - the Force Multiplier, April 1993.

26

Process Technologies Method and Tool Report

would seamlessly link a software development team. The team as a whole would have a
better view of the big picture and team member roles; tasks would be prioritized to improve
productivity and eliminate bottlenecks. A new member of the team would learn the project

and process much more quickly with the guidance available from the environment. At any
time, the manager would know project status, and could use the environment capabilities to
make projections when manpower and schedule changes have to be made.

Such a technology description sounds very much like a description of yet another

"silver bullet" that will solve all our software development problems. It is not! When an
organization wishes to enforce a process, the organization needs to have a well-defined
process and to thoroughly understand that process. The organization must be committed to
process driven development - not to product driven development where, at the first stress, the
established processes are thrown out and a "get it done in whatever way" mentality takes
over. This is the mentality found in Level 1 organizations that comprise the vast majority of
software development organizations. As mentioned in Section 1.1, the level of definition
detail that is necessary for either human enactment or computer enactment is far greater than
exists in most process definitions. And, even if a process has been defined to a precise
enough level of detail for human enactment, much more detail is often needed for a human-
enactable process to become machine enactable. The cleanroom process30 has been under
development for about 20 years, its process description is around 400 pages in length, and
training is extensive; the process itself can be said to be human enactable. It is thought that
"writing" this to the level of detail necessary to make the process computer enactable may

take three times as much detail!31

In addition, it has not been shown that the advantages of such an approach would
outweigh the disadvantages. Unless the enacted process is built very carefully, computer
enactment may not effectively support training, or the piloting and evolution of software
process; it could actually be a barrier to the evolution of software process. Although
computer enactment may make standards readily available to encourage their use, computer
enactment may not be able to really enforce standardization. Early versions of these
environments have been rejected by software engineers due to their rigidity. It hasn't been

3" See Appendix A. 1: Process Asset List for a more complete description.

3 * Conversation with Paul Arnold, STARS Symposium. IBM is working on the computer enactment of
selected portions of the cleanroom process.

27

Software Technology Support Center

proven that this approach really adds value. No-one has proven the cost effectiveness of

computer enactment, except for very small pieces of a process - configuration management,

doing regression testing, doing a build in exactly the same way. It may be that an effective

use of computer enactment will be to automate repetitive tasks, dogwork, error prone tasks -

things that people tend to do poorly.

Computer enactment is largely at the research stage. Though a number of efforts

in the United States and abroad are making progress toward realizing process-driven

environment goals, support for a true process-driven environment is not a reality at this time.

Process-driven environments that do exist tend to incorporate vendor-espoused

methodologies. More flexible architectures for defining (or at least tailoring) the software

process are needed.

Three major approaches to process enactment (using frameworks, customizable

environments, or process definitions as a basis for enactment) will be discussed in Appendix

F, supplemented with examples of products supporting each approach.

1.5.1 Enactment Lessons Learned

The authors have had conversations with several organizations attempting some

level of process enactment32. These efforts have ranged from an attempt to build process

definition into a configuration management system33 to an experiment to fully enact a portion

of a software process34. A number of lessons have been learned: First, there is a lack of

robustness noted with the technology - fixes are often necessary; deficiencies are common.

This is not surprising due to the relative newness of computer enactment technologies.

Secondly, turnkey enactment environments that exist, particularly in the information systems

area, will probably not be acceptable to organizations, at least outside the information

systems realm. In general, it is necessary to have the ability to tailor/change process

descriptions to fit company practices. Thirdly, the level of commitment to the technology

32 Out of respect for their corporate privacy, company names providing lessons learned have been withheld.

33 Using a product such as Caseware/CM.

34 A good description of the experiment to fully automate a portion of the software process can be found in
Myles, D.T., "Automated Software Process Enactment," Proceedings from The Fifth Annual Software Technology
Conference: Software - the Force Multiplier, April 21, 1993.

28

Process Technologies Method and Tool Report

must be very high. Certainly, computer enactment can be accomplished, even given the
maturity of enactment technology at this time; however, organizations will probably
underestimate the amount of effort needed to install enactment technology, both in
sufficiently defining the process to the necessary level of detail and in implementing it with
enactment tools. The learning curve for enactment tools is much higher than with other tools,
largely because traditional tools do not enforce a process. A lot of engineering/definition is
needed to define and constrain the process and to take into account all the exceptional cases
as the enactment environment will often not provide much flexibility. This is why it is

important to pilot small portions of the process before attempting to enact an organization's

entire software process. And, last but not least, introducing computer enactment to an
organization requires considerable effort to sell the idea to users. In general, programmers
tend to mistrust and resist computer enactment.

29

Software Technology Support Center

2 METHODS/TOOLS/TRAINING SUPPORTING
PROCESS TECHNOLOGIES

In order to support the search for appropriate process technology methods, tools,
and training, comprehensive information lists are included in this report. Lists of vendors
and researchers working in the areas of process modeling and computer enactment are
provided. In addition, a complete list of process assets in the Process Asset Library (PAL) is

provided.35

For most tools in the lists, more detailed product sheets are also included as well

as a number of product critiques from users. Since a number of STSC customers are

beginning to use IDEFO modeling for process definition, a list of training offerings is

provided for this technology.

Lists were developed from four types of sources: personal experience, process
technology literature searches, tool/vendor materials, and attendance at relevant conferences.

2.1 Process Technology - Method/Tool/Asset Lists

An important and necessary step in the technology selection process is to identify

candidate tools and methods. In order to assist in this, Appendix A provides comprehensive
lists of process technology methods and tools. Surveys of methods and tools in the areas of
modeling and enactment have uncovered much information about researchers and vendors
working in these areas. Appendix A contains lists providing a complete overview of the field
and summarizing contact/product information. Because the SEI assessment method is
primarily the only such method relevant to both DoD organizations and software

35 The Process Asset Library (PAL) is a reuse library for software processes, containing examples of
experience-tested processes. As members of the software engineering community begin to define their software processes
formally, there will be significant opportunities for reuse. The PAL will provide these important resources to the
engineering community. The PAL is a joint STARS/SEI product. STARS funded the development and made it available on
ASSET, a facility supplying computer access to software reuse libraries, catalogs, and information via wide area networks
and telecommunications; SEI provided oversight. At the time of this report's publication, the PAL was only available to the
STARS community, but efforts were being made to make it obtainable to all. To get an account on ASSET, call (304)594-
1762. Those not affiliated with STARS will not have full privileges online.

30

Process Technologies Method and Tool Report

development specifically, we have not provided a list of assessment technologies Readers
are referred to the Software Engineering Institute for more assessment information.36

The lists provided are: Process Asset List (A.l), Process Modeling List (A.2),

Process Frameworks List (A.3), Computer Enactment Technology List (A.4), and Process-
Driven Environments List (A.5). The Process Asset List encompasses information about

process assets contained in the STARS/SEI Process Asset Library V2.0. The Process
Modeling List contains information about tools and languages supporting process definition,
modeling, and simulation. The Computer Enactment Technology List contains information
about technologies and tools supporting computer enactment. The Process Frameworks List
contains information about frameworks37 that have been used to support the creation of

process-driven environments. The Process-Driven Environments List contains information
about existing environments supporting process-driven development.

2.2 Process Technology - Product Information Sheets

Volume II of this report contains the technology product sheets for most of the
process technologies and tools in the technology/tool lists. These sheets provide detailed
information on process technologies and tools. Information on pricing, contacts, support,
process technology areas covered, intended users of the technology or tool, intended
application area, primary methodology base, hardware platforms, and general tool

capabilities is included. Users of these reports can make preliminary tool assessments based
on the provided information. The information in the reports was obtained either directly
from the vendor or from the vendor's literature. In most cases, the vendor has supplied the
information. There are tools in the tool lists for which there is no associated technology
product sheet. This condition occurs because there was insufficient available information to
create the technology product sheet, either because the vendor did not supply information in
time for publication or because the tool was added to the tool list too late for the creation of a

technology product sheet.

36 For information, contact Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-
3890,; telephone: (412) 268-5800; internet customer-relations@sei.cmu.edu.

37 A framework provides the architectural basis of an environment and provides a set of services as a basis for
environment construction.

31

Software Technology Support Center

The STSC can be contacted for both unpublished and updated reports that may be
available. Please contact the STSC for information on how to obtain Volume II of this
report. STSC contact information is located in the beginning of this document.

2.3 Process Technology - Product Critiques

The STSC solicited product critiques from experienced tool users. These are
included in Volume II of this report, and highlight the experiences (both positive and
negative) of actual tool users.

We would like to expand the number of critiques and the technology areas

included in this section in subsequent reports. If you are a user of a tool that is or should be

included in the tool list and would like to write a critique, please contact the STSC. A
Product critique form is provided at the end of Appendix C.

The STSC can be contacted for both unpublished and updated critiques that may
be available. Please contact the STSC for information on how to obtain Volume II of this
report. STSC contact information is located in the beginning of this document.

2.4 Process Technology - IDEF Training

An IDEFO course training matrix is provided in Appendix E with a representative
list of IDEFO courses. For each set of courses, use of software process examples, use of tools
in the course, and the willingness to customize the course is indicated. More complete
information on each training course is provided in IDEF Training Information Forms, which
can be found in Volume II of this report. While we have attempted to provide a
comprehensive list of training options, we continue to update this list. Please contact the
STSC to provide information about course offerings not on our training list. Also, since
training offerings change frequently, the companies in the list should be contacted to receive
the latest information on courses offered.

32

Process Technologies Method and Tool Report

3 SELECTION AND USE OF PROCESS
TECHNOLOGIES

3.1 When to Use Process Technologies

The overriding reason to use process technologies is as a means to improve the
software development and maintenance process. Though US software statistics collected by
the SEI are confidential, findings support the following claims: In terms of software quality
(measured in terms of software defects shipped), 100 to 1 improvement is possible looking at
proven examples from large systems. In terms of software productivity 10 to 1 improvement

is possible and 100 to 1 improvement is projected.38

In addition, specific cases of measured return on investment (ROI) can be cited.
The Swedish Navy has measured an initial productivity improvement on their ship system FS
200 of 118% which translates into a 55.1% reduction in cost of the actual work being
measured, a 55.1% reduction in the critical path schedule, and a 50% reduction in testing
time.39 In this country, the Hughes Ground Systems Group, Software Engineering Division,
has seen a reduction in cost overrun targets of 50% ($1 million) and a return on investment of
5 to l.40 At Raytheon Equipment Division, Software Systems Laboratory, annual investment
in process improvement is $1 million with a resultant savings in cost of quality of $5.8
million/year, a productivity gain of 29% ($11.2 million/year) and an improvement ROI of
between 5.8 to 1 and 11.2 to l.41 At the Oklahoma City Air Logistics Center, Tinker AFB, a

direct labor savings of $2.935 million and improvement ROI of 6.4 to 1 was measured.42

In all of these cases, attention to software process and the use of process
technologies was a key factor in the improvements measured. However, the SEI is also

38 McKeehan, David, "Planning a Software Process Improvement Program," Tutorial: The Fifth Annual
Software Technology Conference, Salt Lake City, Utah, 19 April 1993.

39 Ibid.

40 IEEE Software, July 1990.

41 Ray Dion briefing, 1992 SEI Symposium.

42 OC-ALC/LAS white paper.

33

Software Technology Support Center

seeing many groups that fail. It is important to consider when it is appropriate to apply a
given technology. Often, using a process technology before the use of that technology is
appropriate can be counter-productive. Therefore, we will consider in this section the
appropriate timetable for process technology insertion for each technology area.

Process assessment technologies have been defined as those technologies that
enable an organization to characterize the maturity of its process. Before any other process
technology is considered, an organization should take advantage of this technology. For
assessment with management commitment, the benefit is very high. An assessment should

ideally identify the most critical process issues and facilitate the initiation of process
improvement actions. Without this assessment, it will be difficult to use the other process
technologies to their full advantage. If assessment has not already taken place, this should be
a first priority. DoD organizations should contact the SEI for further information before
initiating the assessment process.43

Once the assessment has been completed, an organization will have identified an
action plan that may require process definition. Process definition technologies can then be
used to support the formal definition of an organization's software development process. One
effective use of process definition at this stage is to model the "as-is" process and then use
that definition to develop a model of the "to-be" process.

For some added benefit, simulation and analysis of the model can be performed.
After a proposed process has been defined, simulation and analysis will allow an

organization to see any bottlenecks or unworkable flows in the system. For example,

simulating a process may show clearly how several activities are repeatedly delayed until one

activity completes. Once this bottleneck in the process is recognized, then steps can be taken
to improve that aspect of the process. Analysis may show that certain activities do not get
the resources that they need. In these ways, simulation and analysis technologies can
undeniably provide extra insight into problems with an existing or proposed process.
However, it is important to note that much benefit and the biggest ROI will be achieved by a

43 For information, contact Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
15213-3890,; telephone: (412) 268-5800; internet: customer-relations@sei.cmu.edu.

34

Process Technologies Method and Tool Report

thorough definition of the process; much can be learned, including information about flaws in
a system, from a process model without simulating it.

Process enactment technologies have been defined as those technologies that will
support the execution of a software process definition. By this we mean any technologies

that will allow the process definition to be "installed" in the sense that the enacted definition

will manage and/or control the process, and capture measurements as the development
process proceeds. Only after an organization has thoroughly worked the process definition

aspect until the process is well defined, well understood, and consistently used by the
organization, should that organization consider the steps that need to be taken to enact or
automate it. Some feel that process enactment is only sensible for level 5 organizations. For
most organizations, this will be a long-term goal.

3.2 How to Select a Process Technology

In order to evaluate methods, tools, and software engineering environments, it is
necessary, first of all, to define goals and requirements. A method is then chosen that
supports the user's goals and requirements. Lastly, a tool/environment is selected that
supports the chosen method. In all of this, it is important to distinguish between a method
and tools/environments that support method(s). A method provides a step-by-step approach;
a tool provides automated assistance for a method; and an environment provides an
integrated set of tools in support of method(s).

Within each process technology area, for each technology being evaluated, we
must ask first: is it a method or a tool/environment? If it is a method, depending on the
process technology area the method addresses, a particular set of functional and quality
characteristics must be evaluated as well as the level of tool support available for the method.
If it is a tool, a different set of functional, quality, and support characteristics must be
addressed. When it is an environment, yet another set needs to be addressed.

In order to facilitate the evaluation of process technologies, checklists are
provided in Appendix D: Process Technology Taxonomy, for assessment methods, modeling
methods, modeling tools, and Software Engineering Environments (SEEs) designed for
software process model enactment These checklists can be used to characterize the features,

35

Software Technology Support Center

strengths, and weaknesses of a technology and hence assist the user in choosing methods or
tools with the appropriate attributes for a given project. Use the checklists to determine the
essential properties of a tool or method and then use the resulting short list of "must-have"
features when evaluating a process technology.

An effective decision process could follow the following steps:

(1) Identify the process technology area on which to concentrate.

(2) Define goals and requirements.

(3) Use the taxonomy (Appendix D) to identify essential method/tool attributes.

(4) Consult the appropriate candidate tool list (Appendix A) for a comprehensive
list of researchers and vendors working in the chosen process area.

(5) Use the essential attributes, product sheets and product critiques (Volume II of
this report) to shorten candidate tool list.

(6) Use recommended reading list (Appendix F) to learn more about
methods/tools on shortened list. Interview tool users.

(7) Test method or tool in-house.

(8) Make decision.

3.3 How to Use Process Technology

The overall goal of using process methods and tools should be to improve the
software development process. To start the improvement cycle, it is necessary to establish an
organizational baseline against which to measure improvements. It is often helpful to
develop a quick picture of the organization's current software processes for use later on by
the assessment team and by the working groups. It is also necessary to establish an

infrastructure for continuous process improvement. A Software Engineering Process Group
(SEPG)44 working closely with a management steering council can be an effective way to
initiate and sustain this continuous improvement. The SEPG organizational element has been
used throughout the industry with some success; when the SEPG works closely with a

44 The "Software Engineering Process Group Guide" (CMU/SEI-90-TR-24) published by the SEI provides a
good introduction to the operation of an SEPG. It discusses the rationale behind process groups, specifies activities that are
performed in establishing a process group, identifies activities that an established process group would perform on an
ongoing basis, and addresses organizational issues.

36

Process Technologies Method and Tool Report

management council, continuous improvement has been effectively initiated and sustained.
It is necessary to be committed to this effort as the top priority of the software organization;

efforts have failed when they were put on a back burner to deal with the crisis of the day.

3.3.1 Assessment

After an infrastructure for continuous process improvement (such as the SEPG) is

in place, an assessment will help an organization to take the next steps. Though a number of
the guidelines in this section on how to use an assessment effectively come from SEI sources,
such as the recent STSC conference tutorial, guidelines could be applied equally well to both
SEI assessments and Model Based Process Assessments (MBPAs). In either case, in order to
effect change, an organization needs to first understand its existing process. The objective of
an assessment is to understand current software engineering practices, identify key areas for
process improvement, and facilitate the initiation of process improvement actions to provide
a framework for action. In addition, an assessment team can help obtain sponsorship and
support for action and help establish support at all levels for improvement efforts.

During an SEI process assessment, a trained team of experienced software
professionals appraises an organization's existing software process, based on a review of four
or five key projects, responses to an assessment questionnaire, and in-depth discussions with
project leaders and practitioners. Strict confidentiality will always be observed. SEI's
appraisal identifies where an organization should focus its efforts by comparing
organizational process capability to a standard reference model (the CMM) and local expert
opinion. It yields a measure of organizational process maturity and findings based on current
and desired states of organizational maturity. The collective assessment team knowledge and
experience allows the assessors to interpret the data gathered and prepare a report of findings,
an assessed maturity level, and recommendations for improvement. The team will provide

improvement action planning, which will include both long-term recommendations and
short-term quick fixes to capitalize on momentum created by the assessment process.

In an MBPA, the team conducts interviews and constructs a model of the process,

analyzes the process and plans improvements, implements improvements, and then measures,
compares results against the goal, and continues to improve the process. MBPAs identify
where an organization should focus its efforts through analysis by local experts.

37

Software Technology Support Center

After an assessment, the organization either should be prepared to take action or

they should not undergo the assessment. If expectations are raised and then action is delayed,
the question will be, "What happened to process improvement?" and morale will be

negatively affected. It is often important to start the improvement phase with one small
effort and demonstrate success early. Keep improvement efforts visible by using newsletters,
seminars, etc. Use pilot projects to try new practices. Evaluate success and reformulate

practices before institutionalization.

The initial project on which the technology is used must be selected with care.
Implementing a change may cause a negative effect on productivity, particularly when initial

training is taken into account. Because of this, time for introducing the new technology must

be budgeted in the pilot project schedule. Since proper transition to the new technology is

important, the issues of training and technology transition are of particular concern.
Management must budget and plan for the necessary training, or the effort will fail. To get
people through this time of transition, it is necessary to be specific about what is not going to
change and provide sufficient support for the changes that will take place.

3.3.2 Modeling

As standard practices begin to be defined and adopted by an organization, it is
appropriate to adopt a standard approach for defining/modeling those processes. A number
of the process modeling approaches are good candidates for this. It is important to realize
that an organization should start to define pieces of the overall software development process

as soon as process improvement efforts begin to take place, the pieces that will be defined

being the areas of the overall process on which the improvement effort will concentrate.
Even though Level 3 emphasizes process definition, that does not indicate that all
definition/modeling should therefore be restricted to this level and should not be attempted
until an organization is at Level 3. Rather, at Level 3, all components defined at earlier
levels are defined/modeled in an integrated fashion.

Figure 3-1 (adapted from teaching materials developed at the SEI with the
sponsorship of the DoD) shows how modeling can be used to support the improvement
process. Modeling technologies can be used to define the "as-is" process being used in an
organization; the process is then analyzed, monitored and modified to incorporate

improvements. The proposed "to-be" process can then be modeled; this model can help

38

Process Technologies Method and Tool Report

people understand the proposed process, and evaluate it for consistency and effectiveness.
Iterations of the model will take place until reaching consensus on an appropriate approach.
The model can then be used for implementation of the proposed process on pilot projects.

This process then becomes the "as-is" process which will be analyzed, monitored and
modified as necessary. Process improvement should be continuous as indicated in Figure 3-1

and modeling will help this continuous improvement.

TO-BE
PROCESS

Figure 3-1. Using Process Modeling to Support Process Improvement

3.3.3 Enactment

While process assessment and process modeling can allow an organization to reap

important benefits and assist in process improvement, these technologies appear to lead quite
naturally to process enactment technology as the next logical step in the continuum of
process innovations. However, before an organization attempts to enact its process,
commitment to formal process - i.e., structured methods, formal software inspections,
formalized configuration control automation, formalized requirements analysis, prototyping,
training - should all be in place. Enactment is not a first step! Use of enactment technology
should be in a pilot program context, enacting one small portion of a key process area. It is
the opinion of the authors that the technology is too new for production programs.

39

Software Technology Support Center

4 FUTURE DIRECTIONS

Process technologies have proven to have real benefits. Process assessment helps
organizations to take the first steps in improving their process. Defining processes, either

existing processes or proposed processes, helps organizations to uncover process flaws and
design effective and improved processes. However, software process is a new technology
area and, in the opinion of the authors, some process technologies are far from mature.
While the SEI assessment methods are well on their way to being an assessment standard,

both in the DoD and in the commercial world, standard techniques in the areas of modeling

and computer enactment have not been adopted. Over time, de facto standards in the areas of

modeling and computer enactment will probably emerge as these areas become more

widespread. Initially, a variety of methods and tools will be used; however, effective
methods and tools will be retained and less effective methods and tools will be discarded.

In the process modeling area, methods and tools aimed specifically at process
modeling will emerge. Today, most of the modeling methods and tools being advertised as
suitable for process modeling were not designed specifically for that purpose; many were
used for software design, task decomposition, management/enterprise models. Some of these
general-purpose modeling methods/tools will be useful in the process modeling area; some
will not. When surveying modeling tools, the authors found that a number of vendors who
advertise "process modeling" in their promotional literature will admit that their tools have
never actually been used for that purpose! Most modeling tools being actively used for
process modeling today support some graphical representation of the process being modeled.
It seems fair to predict that graphical methods for process modeling will be well-represented
in future process definition methods and tools. However, it is difficult to predict the future
direction for process languages. The fact that no standard language seems to be emerging
from the research efforts in this area, coupled with the appeal of a graphical approach for
communicating the contents of a model, combine to put widespread use of process languages

for modeling in doubt. Nevertheless, process languages may still have a role in some

environments supporting process enactment.

When predicting future directions for process technologies, no area is as murky as
process enactment First, the technology has seen little real use so far. Second, there is some
confusion about just what process enactment really means. Third, the problem of enactment
has been approached from quite disparate directions, as described in Section 1.5. Computer

40

Process Technologies Method and Tool Report

enactment technology is surely a promising technology. However, much of the work being
performed in this area is in a research mode and few commercial products are available. The
actual number of organizations using computer enactment operationally is quite small. In the

short term, the number of players in this area of process technology will probably increase.

A number of research efforts will begin to commercialize their work, some with the support

of ARPA. Over time, there will probably be a decrease in major players, as successful

computer enactment products will become adopted and less successful approaches fail. For
the present, those who want to experiment with enactment should investigate computer
enactment approaches on a very small scale with well-defined parts of an overall process.

41

Software Technology Support Center

5 SUMMARY

This report summarizes the STSC's work to date in the area of process

technologies. A comprehensive compilation of process technologies has been gathered in the

areas of process assessment, modeling, and enactment. Major approaches in each area have

been discussed. A taxonomy of process method/tool characteristics has been developed to

aid in the choice of an appropriate process technology. Vendors and researchers in the area

of process technology have provided information on their methods and tools. Method and

product critiques have been supplied by users. An annotated bibliography provides sources

for more in-depth knowledge. Detailed information has been provided on IDEF methods,

tools, and training.

This is the first report that the STSC has issued in the process technology area.

We will maintain and evolve the report to reflect both increased understanding of the

technology area and changes in the information about methods and tools. The STSC will

continue to update the Method/Tool lists. Additional tool reports and user critiques will be

solicited and published. Emphasis will be placed on methodologies and technologies that

have been successfully used on specific applications. Finally, Software Development and

Support Activities (SDSAs) will be supported in their process technology selection and

insertion efforts when they so request. This report will be republished next year.

42

Appendix A: Process Technology Tool Lists

Appendix A - Process Technology Tool Lists

43

Software Technology Support Center

This appendix contains five separate lists, each of which concentrates on a

particular process technology area. They are:

The Process Asset List
The Process Modeling List
The Process Frameworks List
The Computer Enactment Technology List
The Process-Driven Environments List.

The Process Asset List contains information about process assets contained in the

SEI Process Asset Library V2.0. The Process Modeling List contains information about tools
and languages supporting process definition, modeling, and simulation. The Computer
Enactment Technology List contains information about technologies and tools supporting
computer enactment. The Process Frameworks List contains information about
frameworks45 that have been used to support the creation of process-driven environments.
The Process-Driven Environments List contains information about existing environments
supporting process-driven development. Note that because of the widespread acceptance and
use of the SEI assessment method and the lack of alternative, mature assessment methods, we

have not provided a list of assessment technologies.

Lists were developed from four types of sources: personal experience, process
technology literature searches, tool/vendor materials, and attendance at relevant conferences.
In each list provided, the tools are listed alphabetically by method or tool name. The
information includes the tool or technology name, the developer (in the case of pertinent
technologies) or vendor (for commercial tools), as well as the developer or vendor's address
and phone number. Since a number of technologies span more than one process area or
provide a variety of process functions, a technology category column is provided on most
lists, as well as a column which allows a brief comment about the tool/technology. In
addition, a number of tools, particularly modeling tools, are focused on supporting specific
methods. The class of platform on which the tool runs is often of primary importance to the
potential "buyer." Vendors and researchers often develop, market, and optimize their

45 A framework provides the architectural basis of an environment and provides a set of services as a basis for
environment construction.

44

Appendix A: Process Technology Tool Lists

methods and tools to target specific user application areas. The lists contain columns for
method type, platforms, and target audience where appropriate.

The following abbreviations are applicable to all five lists. Note that, through the

term modeling was used to encompass both definition and simulation in much of the report,
the specific terms, definition and simulation, are used here. The reason for this is to enable
us to identify those tools that explicitly support process simulation in addition to process
definition.

Process Technology Category Abbreviations

A: Technology and Tools Supporting Process Assessment.

D: Tools and Languages Supporting Process Definition.

S: Tools and Languages Supporting Process Simulation.

E: Technology and Tools Supporting Computer Enactment.

SEE: Software Engineering Environment (SEE)/Integrated Programming
Support Environments (IPSEs) supporting process-driven
development.

SEE/F: SEE/IPSE Frameworks supporting the creation of process-driven
environments. (A framework provides an interface for the building
of SEEs.)

Targeted Application Area Abbreviations

MIS-

TECH:

CM:

OTHER:

ALL:

Management Information Systems.

Technical.

Configuration Management.

Real-Time, Scientific Development, Transaction Processing,
Embedded System Development, etc.; specific area targeted
specified where space permits - otherwise information is available
on individual Product Sheets.

Tools/methods targeted to all market segments.

45

Software Technology Support Center

Platform Abbreviations

DT: Desktops, including Macintoshes and PCs.
WS: Workstations, including computers classed as mini-computers.

MF: Mainframes.

Many of the process technology tool lists use additional abbreviations relevant

only to a single tool list. In that case, abbreviations applicable to a specific list are noted at

the beginning of the relevant list.

Additional information on specific tools or methods can be obtained using the

Product Information Sheets in Volume II of this report. For information on how to order
Volume n, please contact the STSC customer service department at (801)777-7703 or DSN
458-7703, fax to (801)777-8069 or DSN 458-8069, or email to godfreys@wpo.hill.af.mil.

Due to the very dynamic nature of the process technology area, lists may contain
inaccuracies and omissions. If you are aware of any, please contact the STSC using the

information above.

46

Appendix A: Process Technology Tool Lists

A.1 Process Asset List

The Process Asset Library (PAL) is a reuse library for software processes,

containing examples of experience-tested processes. The PAL is a joint STARS/SEI product.
STARS funded the development and made it available on the Asset Source for Software
Engineering Technology (ASSET), which supplies computer access to software reuse

libraries, catalogs, and information via wide area networks and telecommunications. SEI

provided oversight. This list contains information about process assets contained in the SEI
Process Asset Library V2.0. Assets are presented in alphabetical order. The information
includes the component or asset name, contact information, and a brief comment about the

process asset.

At the time of this report's publication, the PAL was only available to the STARS
community, but efforts were being made to make it obtainable to all. To get an account on
ASSET, call (304)594-1762. Those not affiliated with STARS will only be able to read the

abstracts online.

COMPONENT/ASSET DEVELOPER/VENDOR COMMENTS
Cleanroom Engineering Software
Process

Paul G. Arnold
IBM Federal Systems Co.
800 N.Frederick Ave., 182/3M34
Gaithersburg, MD 20879
(301)240-7464

Process guide with process model in a
graphical box structure notation

Domain Specific Software
Architecture Process Lifecycle

J.W. Armitage
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412)268-6589

Process guide, information mapped™, IDEF0

IEEE Standard 1074-1991, IEEE
Standard for Developing
Software Life Cycle Processes,
Section 3 Project Management
Processes

Neal Reizer
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412)268-2854

IDEF0 Model, with English text supplemental
information

IEEE Standard 1074-1991, IEEE
Standard for Developing
Software Life Cycle Processes,
Section 3 Software Quality
Management and V+V Process

Marc I. Kellner
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412)268-7721

done using STATEMATE

Quality Function Deployment Kenneth Y. Nieng
AT&T Bell Laboratories
Room 2A-223
263 Shuman Blvd.
PO Box 3050
Naperville, IL 60566
(708)7134746

English text process guide, embedded SADT
model

47

Software Technology Support Center

Requirements Elicitation Process Kenneth Y. Nieng
AT&T Bell Laboratories
Room 2A-223
263 Shuman Blvd.
PO Box 3050
Naperville, IL 60566
(708)713-4746

English text process guide, embedded S ADT
model

Software Configuration
Management Process

Warren Mosely
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412)268-5174

process guide, SPMS model

Synthesis Mark D. Kasunic
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412)268-5039

process guide, IDEF0 model

The TRW Ada Process Model Fred A. Maymir-Ducharme
Paramax (STARS Program)
12010 Sunrise Valley Drive
Reston,VA 22091
(703)620-7596

English text process guide, embedded SADT
(using Design IDEF)

48

Appendix A: Process Technology Tool Lists

A.2 Process Modeling List

This list contains information about tools and languages supporting process
definition, modeling, and simulation. The technologies and tools are presented in
alphabetical order. The information includes the tool or technology name, contact
information, the method supported by the tool, the platform the tool runs on, the target

audience for the technology, and, a brief comment about the tool.

Modeling Method Abbreviations

IDEF/S ADT: Supports IDEF or S ADT methods
SA: Supports structured analysis
RTSA: Supports real time structured analysis methods
EPM: Supports entity process modeling
PPL: Process programming language
SD: Supports system dynamics modeling

PN: Supports Petri Nets
DM: Supports data modeling
AI: Builds models using artificial intelligence techniques
00: Supports object-oriented model design

. MI: Methodology independent
D/S: Supports definition and simulation of a process
D: Supports definition of a process solely
E: Method provides support for enactment

49

Software Technology Support Center

::jv::"-.TOOL".'.>;.':.:,-.
TECHNOLOGY

»£VfcLOPER/VEM>OR METHOD/

PLATFOR\f

TARGIft

COMMßSITS

AIO Knowledge Based Systems Ine
Contact: David N. Rice
2746 Longmire
CoDege Station, TX
77845-5424
Phone: (409)696-7979
FAX:(409)696-7277
BBS:(409)696-7055

JDEF/SADT: D

DT

MS, TECH, REAL-TIME

JDEF0 package for PC.
(Issue of simulating their IDEF0 models being
worked.)

AI4 Knowledge Based Systems Ine
Contact: David N. Rice
2746 Longmire
College Station, TX
77845-5424
Phone: (409)696-7979
FAX:(409)696-7277
BBS:(409)696-7055

JDEF:D

DT,
WS (planned)

MS, TECH, REAL-TIME

An interactive Unix-based tool for object-
oriented design.

AGE/ASA Verflog, Inc.
3010 LBJ Freeway
Suite 900
Dallas, TX 75234
contact: R. Wesley Hair
214-241-6595

JX>EF/SADT:D/
S

DT.WS

TECH, REAL-TIME

Rqmts and testing workbench based on
SADT/IDEF0.

Ada Process
Programming
Language based on
Aspen (APPL/A)

Computer Science DepL
University of Colorado
Boulder, Colorado 80309-0430
contact Stanley M. Sutton, Jr.
phone: (303)492-7906
fax:(303)492-2844

PPL: D/S/E

N/A

ALL

Ada superset providing machine-executable
support
(developed as part of the DARPA Arcadia
project).

AP5 contact: N.Goldman and
K. Narayanaswamy

AI:D Approach using AI methods including rules
pre/post- conditions, events and triggers. Also
uses object modeling including class types and
instances, hierarchy and inheritance.

Authormate Eclectic Solutions Corporation
Contact: Pat Duran/Al Irvine
5580 LaJolla Boulevard
Suite 130
LaJolla, CA 92037-7692
Phone (619)454-5781

(619)457^511
FAX: (619)450-9949

IDEF/SADT:D

DT.MF

ALL

Used to be called "COINS." This is a
complete modeler's workstation environment.

AutoSADT TRIUNE Software, Inc.
2900 Presidential Dr. Ste240
Fairborn, OH 45324
ph: (513)427-9900
fax: (513)427-9964

IDEF/SADT:D

DT

MS, TECH

MAC + PC Windows tool version that has
less functionality than other IDEF/SADT
tools, and is less expensive.

BPwin Logic Works
Contact: Jeffrey D. Mershon
1060 Route 206
Princeton, NJ 08540
Phone: (609)252-1177
FAX: (609)2521175
CompuServe:
70262,1135@compuserve.com

IDEF/SADT:D

DT

BPwin supports the IDEF0 activity modeling
notation, and supports creation of an IDEF0
kit. BPwin also supports Activity Based
Costing

50

Appendix A: Process Technology Tool Lists

Business Design
Facility (BDF)

Texas Instruments
Piano, TX
phone: 1-214-575-5599

DM:D

WS

MIS

Analysts can create "as-is" and "to-be" models
of an organization to aid in process
engineering decisions.

Design/CPN Meta Software Corp.
150 CambridgePark Dr.
Cambridge, MA 02140
(617)576-6920

PN: D.S

DT.WS

ALL

Tool that can be used to support process
definition using the formal principles of
hierarchical colored Petri nets.

Design/IDEF Meta Software Corp.
150 CambridgePark Dr.
Cambridge, MA 02140
(617)576-6920

EDEF/SADT:D

DT.WS

MIS, TECH

Tool can be used to support process definition
using IDEF graphical notation. Design/CPN
can then be used for simulation if that is
desired. (A MetaSoftware tool exists for
translating IDEF diagrams to Petri Net
format)

DYNAMO Pugh Roberts Associates, Inc.
41 William Linskey Way
Cambridge, MA 02142
617-864-8880

SD: D.S

DT

MIS, TECH, OTHER

System Dynamics approach.

EasyCASE
Professional

Evergreen CASE Tools
8522 154th Avenue, NE
Redmond, WA 98052
phone: (206) 881-5149
fax: (206)883-7676

IDEFIX, SA,
RTSA, IDEF1X:
D

WS,DT

ALL

Process Modeling supporting graphical
editing, with an underlying data dictionary
and report generation

EasyCASE
System Designer

Evergreen CASE Tools
8522 154th Avenue, NE
Redmond, WA 98052
phone: (206) 881-5149
fax: (206)883-7676

IDEF1X.DM,
SA, RTSA,
IDEFIX: D

WS.DT

ALL

Same functionality as EasyCASE
Professional, but sed for data modeling,
extracts chema from your E-R diagrams, view
entity attributes right on your charts.

ERWIN Logic Works
Contact: Jeffrey D. Mershon
1060 Route 206
Princeton, NJ 08540
Phone: (609)252-1177
FAX: (609)2521175
CompuServe:
70262,1135@compuserve.com

JDEF-.D

DT

TECH, MIS, REAL-TIME

Products concentrate on data modeling
(IDEFl.IDEFIX).

ESF/SPECIMEN
(SPECIMEN is a
project within ESF
oriented around the
creation of process
programs)

PPL:D ALL

Process Control Language (PCL) provides the
process control mechanisms of the
environment.

Excelerator II Intersolv
3200 Tower Oaks Blvd.
Rockville, MD 20852
tele: (301) 230-3200
fax: (301)231-7813

SA, RTSA, OO,
DM: D,E

MF.WS.DT

MIS

Users can model data-driven, process-driven,
and event-driven systems using methodologies
off-the-shelf or tailor them using the
Customizer.

Formal Software
Process Notation
(FSPN)

Software Productivity
Consortium
SPC Building
2214 Rock Hill Road
HemdoruVA 22070-9858

PPL: D, E Notation designed to map to a software
development environment to permit process
management.

51

Software Technology Support Center

GRAPPLE Computer and Information
Science Department
University of Massachusetts
Amherst,MA
contact: Karen Huff

AI:D A system based on an AI planning paradigm.

The Hierarchical
and Functional
Software Process
(HFSP) description
and enactment
language

Department of Computer
Science
Tokyo Institute of Technology
contact: T. Katayama

PPL: D/E Functional language with constructs
supporting enaction.

IDEFine Wizdom Systems Ine
Contact- Don Sloan
1300 Iroquois Avenue
Naperville, IL 60563
Phone: (708)357-3000
FAX: (708)357-3059

IDEF/SADT:D

DT

TECH, MIS, REAL-TIME

PC-based IDEF0 and IDEF1X process
definition tools; exports in format readable by
CACI's SIMprocess for simulation.

IDEF/
LEVERAGE

D. Appleton
1334 Park View Ave Suite 220
Manhattan Beach, CA 90266

Phone: (310)546-7575

J£>EF/SADT:D

DT.WS.MF

ALL

Personal IDEF/ LEVERAGE is a PC based
IDEF0 modeling package. Regular IDEF/
LEVERAGE on large host mainframe can
read these models via a standard modeling
language (SML, AML) for reporting, analysis,
merging, etc.

Integrated Model
Development
Environment
(IMDE)

TASC
2555 University Blvd.
Fairbom, OH 45324
tel. (513) 426-1040
fax. (513) 426-8888
contact- Patrick Clark

00:D/S

WS

TECH

Supports graphical, object-oriented
construction of simulation models.

LBMS Project
Engineer

LBMS, Inc.
1800 West Loop South
Suite 1800
Houston, TX 77027
(713) 682-8530
1-800-231-7515

MI: D/E

DT

ALL

Project planning and estimation tool; can be
used to support any development method.

MicroWorld
Creator

Micro Worlds Inc.
347 Broadway Street
Cambridge, MA 02139
(617)547-9898

SD: D/S

DT

TECH, MIS, REAL-TIME
PROJECT-MGMT

System Dynamics approach.

MVP-L The Multi-View Modeling
Project (MVP)
University of Maryland
College Park, MD 20742
contact Christopher M. Lott
cml@ cs.umd.edu

PPL:D Rule-based textual process representation
language.

ObjectMaker MarkV SA, OO, DM

DT.WS

ObjectMaker is a software development
workbench using a variety of methods and
supporting analysis, design, code generation,
and reverse engineering. Model attributes
stored in a common repository, and can be
viewed using different notations.

Object Modeling
Workbench
(OMW)

James Martin and Co.
Rosemont, IL and
Ltfellicorp
Mountain View, CA
phone: W15-965-5634

D/S
Supports execution of process models defined
through the semi-formal graphical notation
espoused by Martin and Odell; aimed for the
business market.

52

Appendix A: Process Technology Tool Lists

PACE Grossenbacher Elektronik AG
Spinnereistrasse 8
9008 St Gallen
Switzerland
tel. 01142 72 26 31 51
fax: 01141 71 24 04 06
contactRobert Schopflin

PN, 00: D/S
Graphical interactive tool based on high level
Petri Nets, combined with object oriented data
modeling.

PLAN/1 Andersen Consulting
69 West Washington St
Chicago, JL 60602
tele: (312) 580-0069
fax: (312)507-2548

SADT/IDEF,
DM:D

DT

MIS, TECH

functional modeling using diagrams with
SADT-type syntax; in addition a data
modeling editor for E-R diagrams and data
modeling. One of 5 major modules in
Andersen's life-cycle application development
environment Foundation.

PMDB Info taken from article titled
"Process Modeling," as seen in
Communications of the ACM,
Vol 35, No. 9, September,
1992.. Authors were Bill
Curtis, Mark Kellner, and Jim
Over.

D/E Method emphasizes data modeling including
E/R, relations, and structured data
declarations; produces executable software
process models; has been used to develop and
analyze models of actual software processes.

ProCAP Knowledge Based Systems Lie
Contact: David N. Rice
2746 Longmire
College Station, TX
77845-5424
Phone: (409)696-7979
FAX:(409)696-7277
BBS:(409)696-7055

IDEF:D

DT.WS

MIS, TECH, REAL-TIME

PC/MAC/UNIX.
Process Description Capture: Uses the new
JDEF3 technology, which has a different
look/syntax, than IDEF0. Captures
precedence & causality relations between
situations and events giving models a concept
of time. JDEF0 doesn't capture those
concepts; SADT does to some degree.

Prototype
Engineering
Information
System (PREIS)

Honeywell Systems and
Research Center
3660 Technology Dr.
Minneapolis, MN 55418
contact John Kimball

00:D PREIS employs an object-oriented
engineering approach which features a
control points and policies mechanism for
automating administrative actions.

Process Modeling
Language (PML)

Praxis Systems PLC
20 Manvers Street
BathBAl IPX
England
contact Clive Roberts

PPL: D/S/E
Object-Oriented
Conceptual Modeling Language:
- undertaken as part

oflPSE 2.5 project
ProTEM SCIL

13812 SE 240th
Kent WA 98042
(206) 631^212

PN:D/S

DT

ALL

Petri net-based modeling tool.

Programmer
Command Center

Compuware Corporation
31440 Northwestern Highway
Farmington Hüls, MI 48018
(313) 737-7300

Process control product for
mainframes.

ProEditor Cecil Martin
International Software
Systems, Inc.
9430 Research Blvd Bldg.4,
#250
Austin Texas 78759
(512) 338-5741

PPL: D/E

WS

TECH, MS, REAL-TIME

This tool supports graphical editing/creation
of process models, and supports the VPML
notation (see VPML below)

53

Software Technology Support Center

RDD-100
(Requirements
Driven
Development)

Ascent Logic Corporation
180 Rose Orchard Way
Suite 200
San Jose, CA 95134
phone: 408-943-0630
fax: 408-943-0705

EPM: D/S

DT.WS

ALL

The RDD language and notation (Behavior
Diagram notation) combines data, control and
functions in one graphical display.

Role Interaction
Nets (RIN)

Microelectronics and Computer
Technology Corp. (MCC)
Austin, TX
contact B. Singh and G. Rein

PN:D Technique models the role interaction
structure of a project using a Petri net-based
representation and language; formalism can be
used as an underpinning for coordinating
activities in a process-driven environment
Has now been used in a commercial product;
strong in representing roles, dependencies and
process elements; however, its representation
of artifacts is weak.

SIMprocess CACI
Contact: Ron Flauaus
1100 North Glebe Road
Arlington, VA 22201
(703)8414430

JDEF/SADT:D/
S

DT.WS

MS, BUSINESS PROCESS ENG.

Simulates imported Wizdom Systems IDEF0
models. Can also simulate their own NON-
JDEF models.

Software Process
Management
System (SPMS)

SAIC STC
Cielo Center One, Suite 380
1250 Capital of Texas Hwy. S.
Austin, TX 78746
contact Jim Terrel

Adam Linehan

D.S.E Employs reuse-based mechanisms for
developing project-specific software
processes. Still in R&D stage. A fully
functional SPMS will eventually be embedded
in a process-centered STARS SEE in the
1993-1996 time period.

Software through
Pictures (StP)

Interactive Development
Environments
595 Market Street, 10th Floor
San Francisco, CA 94105
telephone: (415) 543-0900
fax:(415)543-0145

RTSA: D

WS

ALL

Upper CASE tool which supports structured
and object-oriented process definition
development

STATEMATE I-LOGK, INC.
22 Third Ave.
Burlington, MA
(617) 272-8090

EPM: D/S

WS

REAL-TIME

Systems engineering tool which can be used
to define and simulate a process definition.

STELLA H
(and a similar
product by High
Performance
Systems: IThink)

High Performance Systems,
Inc.
45 Lyme Road
Hanover, NH 03755
603-643-9636

SD: D/S

DT

ALL

System Dynamics approach.

System Architect Popkin Software & Systems,
Inc.
11 Park Place
New York, NY 10007
(212) 571-3434

JDEF/SADT,RT
SA, EPM, OO:
D

DT

ALL

Supports a variety of methodologies, OOD,
structure charts, state transition,
decomposition, entity-relationship diagrams,
flow charts. |

The Software Technology for Adaptable, Reliable Systems (STARS) Program is sponsored by ARPA,
contracted through Air Force Electronic System Division, and involves three cooperating Primes - Boeing, IBM, and
Paramax - and a large number of subcontractors. The STARS goal is to increase software productivity, reliability, and
quality by synergistically integrating support for modem software development processes and modern reuse concepts within
state-of-the-art software engineering environment technology

54

Appendix A: Process Technology Tool Lists

Teamwork Cadre Technologies, Inc.
222 Richmond Street
Providence, RI02903
telephone: (401)351-5950
fax: (401)351-7380
contact Barry Ackerman

RTSA: D

WS

ALL

Upper CASE tool which can be and has been
used for process definition

TurboCASE Structsoft
5416 156th Ave. SE
Bellevue,WA 98006

SA, 00, EPM:
D

DT

TECH, REAL-TIME

Modeling tool supporting the traditional
analysis and design techniques as well as the
newer 0-0 analysis and design
methodologies.

Visual
Programming
Language (VPL)

Department of Computer
Engineering, Royal Military
College of Canada
Kingston, Ontario
Canada K7K5LO
contact Terry Shepard
fax:(613)547-3053

PPL: D/E

Minimal tool support.

Visual Process
Modeling
Language (VPML)

Cecil Martin
International Software
Systems, Inc.
9430 Research Blvd Bldg.4,
#250
Austin Texas 78759
(512)338-5741

PPL: D/E

DT.WS
(GOTS Soon)

TECH, MIS, REAL-TIME

Process language embodying three distinct
perspectives: process modeling (Provision),
Information modeling, and resource modeling.
Of these, only Pro Vision is currently
implemented.

55

Software Technology Support Center

A.3 Process Frameworks List

This list contains information about SEE/IPSE frameworks supporting the
creation of process-driven environments. A framework provides an interface for the building
of SEEs. The technologies and tools are presented in alphabetical order. The information
includes the tool or technology name, contact information, process technology category

(type), platform, and, a brief comment about the tool.

TOOL
TECHNOLOGY

DEVELOPER/VENDOR PLATFORM

COMMENTS
Atherton Software
Backplane

Michael Wendt
Atherton Technology
1333 Bordeaux Drive
Sunnyvale, CA 94089
Phone: (408)734-9822
FAX: (408)744-1607

WS

The Software Backplane was
developed as a framework for
building an Integrated Project Support
Environment (IPSE), independent of
tools, methodology, language or
platforms, using an object-oriented
tool integration methodology.

Common Ada
Programming
Support
Environment
Interface Set
(CAIS-A)

Controlled by AJPO
contact: Gary Pritchett
10875 Rancho Bernardo Rd.
Suite 100
San Diego CA 92127
(619)451-9301

WS

Does not provide for process
modeling; however, it provides lower-
level capabilities upon which one may
build those capabilities.

ESPRIT Portable
Common Tool
Environment *
(PCTE)

W. Wohlschlegel, CEC
25 rue Archimede
1040 Brussels, Belgium
32-2-236-0257
suppliers:
Bull
Louweciennes, France
Software Sciences
London, England

Repository interface specification
standard; does not provide explicidy
for process modeling services;
however, it provides lower-level
capabilities upon which one may
build those capabilities.

The project's goal was to provide a common interface for the Esprit program and define a complete set of
framework services to support tool development. The PCTE interfaces were submitted for ISO standardization in 1990.

56

Appendix A: Process Technology Tool Lists

SoftBench 3.0 Hewlett-Packard WS
Software Engineering Sys Div. ~
3403 /e. Harmony Rd.
Ft. Collins, CO 80525-9599 Tool integration platform upon which
tele: (303) 229-3800 a custom development environment

can be built.

57

Software Technology Support Center

A.4 Computer Enactment Technology List

This list contains information about technologies and tools supporting process

enactment. The technologies and tools are presented in alphabetical order. The information
includes the tool or technology name, contact information, process technology category

(type), platforms supported, and, a brief comment about the tool.

TOOL
TECHNOLOGY

DEVELOPER/VENDOR PLATFORM COMMENTS

Apt Computer Science Department
University of Colorado
Boulder, CO 80309-0430
contact: Dennis Heimbigner
phone: (303)492-6643
fax: (303)492-2844

Part of Arcadia project

WS
Apt translates programs written in a subset
of the AAPL/A process programming
language into an equivalent Ada program
that may be compiled and executed.
(APPL/A is a process programming
language used in some process-driven
environments.)

CASE* Method Oracle Corp.
500 Oracle Parkway
Suite 4
Redwood Shores, CA 94065
(800) 345-3267

WS
Support for process mgmt in a Single
vendor toolkit - not tailorable wit
methodology.

CaseWare/CM CaseWare, Inc.
8300 Boone Blvd., Suite 500
Vienna, VA 22182
contact: Lesli Mangeri
phone: (703) 848-9272
fax: (703)848^586

WS
Uses a company-defined language,
ACCENT, for process definition; once the
process is defined, CaseWare/CM controls
a project so that software and documents
will be developed according to the process
defined.

FastPACE James Martin & Company
Reston, VA
phone: 1-312-693-5040
fax: 1-312-693-3112

WS Tailored for the Information Engineering
method as implemented under
KnowledgeWare's ADW; integrated with
other JMC tools.

firetCASE

[Cross Life Cycle
product under IBM's
AD/Cycle]

AGS Management Systems
880 First Avenue
King of Prussia, PA 19406
(215)265-1550

WS
Process management for component
CASE; interfaces to several major CASE
tools and unifies the mgmt of tools,
techniques, policies and procedures.

FirstEP Jim Dutton
International Software
Systems, Inc.
9430 Research Blvd Bldg.4, #250
Austin Texas 78759
(512)338-5741

WS
An enterprise and process description
method Enterprise modeling includes
process modeling, infrastructure
modeling, and information modeling.
Used in the Pro-SLCSE environment

Formal Software
Process Notation
(FSPN)

Software Productivity
Consortium
SPC Building
2214 Rock Hill Road
Herndon, VA 22070-9858

Currently
unimplemented

Notation designed to map to a software
development environment to permit
process management

The Hierarchical and
Functional Software
Process (HFSP)
description and
enaction language

Department of Computer Science
Tokyo Institute of Technology
contact: T. Katayama

Functional language with constructs
supporting enaction.

58

Appendix A: Process Technology Tool Lists

Integration Softboard Denise Boucher
Atherton Technology
1333 Bordeaux Drive
Sunnyvale, CA 94089
(408)734-9822

WS
Allows the behavior of any software
engineering process written in any
Tjrogramming language to be used by die
Atherton Backplane to enable the
automation of development rules.

KI-Shell
(Knowledge-based
Integration Shell)

UES.Inc.
5162 Blazer Memorial Pkwy
Dublin, Ohio 43017-1339
contact: Dale Upshaw
phone: (614) 792-9993
fax:(614)792-0998

WS
Advertised as "The best off-the shelf
object-oriented product for process
modeling and enactment."

METHOD/1 Andersen Consulting
69 West Washington St.
Chicago, IL 60602
tele: (312) 580-0069
fax: (312)507-2548

WS.DT
Provides an automated system for work
planning and project control based on
Andersen's proprietary information
planning development process. One of 5
major modules in Andersen's life-cycle
application development environment.
Foundation.

Process Weaver CAP Gemini America
5120 Goldleaf Circle
Suite 130
Los Angeles, CA 90056
contact: Mr. Larry Proctor
(213)291-7804

WS
Research for this tool was done in the
Eureka Software Factory (ESF); product is
a commercially available, tailorable
process management tool.

SynerVision Hewlett-Packard
Software Engineering Sys Div.
3403/e. Harmony Rd.
Ft. Collins, CO 80525-9599
tele: (303) 229-3800

WS
Process engine that can be used to provide
process automation, definition, guidance
and metrics in a SoftBench process
environment.

Toolbuilder IPSYS Software
Marlborough Court
Pickford Street, Macclesfield
SK116JD, Cheshire, UK
local distributor
Newbury, MA
tele: (508) 463-0006
fax: (508)462-9198

WS
A Meta-CASE environment that enables
rapid prototyping and development of
customized CASE environments.

Virtual Software
Factory (VSF) Limited

8300 Boone Boulevard
Vienna, VA 22182
contact: Dr. Mel Selwood
(703) 848-9282

DT, WS
Workbench that allows user to specify
methodology; methodology independent -
can be configured to support any method;
has been used for SADT, COD and IDEF.

59

Software Technology Support Center

A.5 Process Driven Environments List

This list contains information about SEE/IPSEs supporting process-driven

development. The technologies and tools are presented in alphabetical order. The
information includes the environment name, contact information, enactment approach

(method), platform, target users, and, a brief comment about the tool.

Environment Abbreviations

F: Environment built on a framework that supports enactment

CEE: Customizable enactment environment

PDEE: Environment generated by process definition
TPDE: Non-customizable turnkey process-driven environment
D/E: Environment supports both definition and enactment
D/S/E: Environment supports definition, simulation and enactment

TOOL
TECHNOLOGY

DEVFJLOPER/VENDOR METHOD

MATFOEIM

TARGET

COMMENTS

Arcadia Richard Taylor
Information and Computer Science,
University of California
Irvine, CA 92717

PDEE: D/E More advanced than usual university
prototype/Hybrid approach combining
procedural and rule-based paradigms.

Concerto Sema Group
France

SEE European Software Engineering Factory;
targeted for the support of technical
applications; open and configurable
architecture; on the market now.

EPOS
(Engineering and
Project-management
Oriented Support
System)

GPP
Kolpingring 18a
Oberhaching, München
D-8024, Germany
tele: +49-89-613041
fax: +49-89-61304-294

TPDE: D/E

MF, WS, DT

MIS, TECH, REAL-TIME

Fully integrated, yet open life-cycle
environment allowing integration of user
or third-party tools.

* The Arcadia Consortium consists of a collection of separately funded, informally coordinated research and
development projects at the University of California at Irvine (UCI), the University of Colorado at Boulder (UCB), the
University of Massachusetts at Amherst (UMass), Stanford University, Incremental Systems Corporation, and TRW Defense
Systems Group. This Consortium was formed in August 1987. The funding of these projects is provided by the Advanced
Research Projects Agency (ARPA), and is a(lministered by the National Science Foundation (NSF), and the Navy's Space
and Naval Warfare Systems Command (SPAWAR). The universities also have other sources of funding, and the
corporations have made internally funded investments in the work of the Arcadia Consortium.

60

Appendix A: Process Technology Tool Lists

ESF**
(EUREKA Software
Factory)

ESF
Hohenzollemdamn 152
D-1000
Berlin, Germany

PDEE: D/E Process model-driven hybrid approach;
completion 1996.

EUREKA
Advanced Software
Technology (EAST)
Project

SFGL
14, rue de le Ferme
92100 Boulogne
France
tel: (33-1)47 6105 20
fax: (33-1) 47 619215

SEE:D/E Project aimed at producing an
integrated software factory/PCTE-based
open systems CASE environment for a
number of application domains. This is
now commercially available.

Foundation Anderson Consulting
69 W.Washington
Chicago, IL 60602
tele: (312) 580-0069
fax: (312)507-2548

CEE: D/E

MF.WS.DT

MIS, TECH

An integrated CASE environment to
automate and manage die entire systems
development life cycle.

I-CASE Harris Strategic Alliance
contacts:
Jeff DePasquale, Harris
(407)242-5223
Amy Snare, Paramax
(703) 620-7163

SEE: D/S/E

WS

ALL

Uses PCMS configuration mgmt system
to define process (roles, entry-exit
conditions, etc.); env enforces process;
context and tools brought up
automatically when user clicks.

Information
Engineering Facility

Texas Instruments
P.O. Box 869305, M/S 8474
Piano, TX 75086
(214)5754405

TPDE:E Support for process mgmt for business
information and activities in a single
vendor toolkit - based on Information
Engineering Methodology (IEM) - not
tailorable wit methodology.

Inscape
Environment

AT&T Bell Laboratories
Murray Hill, NJ
contact:
Dewayne E. Perry

SEE: D/E
Pre-conditions and post-conditions used
as points of interconnections between
software development activities.

ISPW Benchmark Technologies
Suite 300, 839 Fifth Ave.
S.W. Calgary, T2P3C8
Alberta, Canada
tele: (403) 269-7499
fax: (403)265-2379

CEE: D/E

MF

MIS

Automated application management
environment - can be customized for an
organization's own process and standards.

ISTAR Imperial Software Technology
60 Albert Court Prince Consort Road
London SW7 2BH England

SEE: D/E An early commercial example of a
process-driven environment; supports a
"contractual" approach to process
definition.

Maestro Softlab Inc.
188 The Embardcadero
Bayside Plaza, 7th Floor
San Francisco, CA 94105
(415) 957-9175

TPDE: E Support for process, tightly woven with
methodology espoused by vendor -
focuses primarily on project mgmt, large-
scale sw engineering information
collection, storage, retrieval, and control.

MARVEL Columbia University
New York, NY/
Software Engineering Institute
Carnegie Mellon Univ.
Pittsburgh, PA 15213

PDEE:E
Rule-based approach; MARVEL is an
instance of a rule-based process server.
A recent prototype in C is available for
trial use.

Over two hundred people spread across more than twenty sites in five countries are involved in the ESF
project The companies involved represent computer manufacturers, research institutions, CASE tool producers, and system
developers. By 1991, halfway into the 10-year project, ESF has defined a reference architecture, completed the first
implementation of a supporting framework and various tools and tool prototypes, and has undertaken several factory-
integration experiments.

61

Software Technology Support Center

MATE
(Methods and Took
Expert)

Advanced Development Methods
49 Solomon Pierce Rd.
Lexington, MA 02173
tele: (617) 861-7848
fax: (617) 861-3817

CEE: D/E

WS.DT

MIS Primarily

knowledge-based system for managing
the systems development process; the
ADM methodology is a turnkey process
which comes loaded into MATE - it may
be modified or replaced with custom
methods.

MELMAC Dortmund University
Dortmund, Germany

PDEE: D/E Uses FUNSOFT nets (high-level Petri
nets) to define software processes;
mechanism based on modification points
used to cope with software process model
modifications during software process
execution.

Navigator Systems
Series

Ernst & Young
600 East Las Colinas Boulevard
Irving, TX 75039
contact Clark Norman
phone: 214444-2165
fax: 214444-2102

TPDE: D/E
Information engineering-based turnkey
system which defines the process for
information engineering system
development automated and integrated
through CASE technology.

PACT*** The PACT Project
BuUS A.
68, Route de Versailles
78430 Louveciennes
France

SEE/F: D/E
Environment that uses the framework
services of the environment framework,
PCTE.

Pro-SLCSE Cecil Martin
International Software
Systems, Inc.
9430 Research Blvd Bldg.4, #250
Austin Texas 78759
(512) 338-5741

SEE: D/E

WS

TECH, MIS, REAL-TIME

Uses Visual Process Modeling Language
(VPML) and a data-flow paradigm to
define processes.

SLCSE Frank LaMonica
USAF Rome Laboratory
C3I Directorate
Software Technology Division
Software Engineering Branch
Griffiss AFB, NY 13441
(315)330-2054

SEE: D/E

Minimal rule-based capabilities largely
related to tool invocation.

Softman
environment

Decisions Systems Dept
University of Southern Calif.
Los Angeles, CA 90089

SEE:E Part of USC's System Factory project

Summit Process Coopers & Lybrand
P.O. Box 5258
Princeton, NJ -8540
contact: John Dilley
phone: 609-520-6161
fax: 609452-0177

CEE: D/E

DT

MIS

Incorporates a fully automated
methodology which covers the entire
development life cycle; methodology can
be modified or rewritten; major customer
emphasis - information systems.

Synergy CASE Methods Development
Corporation
100 North Central Expressway
Suite #710
Richardson, Texas 75080
tele: (214) 437-9700

SEE/F: D/E

WS

ALL

Allows definition of process via a textual
definition language and populates a
database; tools can be launched.

*** The PACT project is part of the ESPRIT program and is partially funded by the Commission for the
European Communities. The PACT project members include Bull SA, Eurosoft, GEC, Software Ltd, ICL, Olivetti,
Siemens, Syseca, and Systems and Management

62

Appendix A: Process Technology Tool Lists

System Factory Dr. Walt Scacchi
Decisions Systems DepL University
of Southern Calif.
Los Angeles, CA 90089
(213)7404782

PDEE: D/S/E

WS

TECH, MS, REAL-TIME

A configurable environment of software
process engineering technologies for
large-scale development applications;
being transferred into commercial
products at this time.

TRIAD/CML Ohio State University/
Universal Energy Systems (UES)
Columbus, Ohio

PDEE: D/E
Imperative approach using
Conceptual Modeling Language (CML).

63

Software Technology Support Center

(This page is intentionally left blank)

64

Appendix B: Process Technology Information Sheets

Appendix B - Process Technology Product Sheets
(See Volume II)

65

Software Technology Support Center

Volume II of this report contains technology product sheets for most of the
process technologies and tools in the technology/tool lists. These reports provide detailed
information on process technologies and tools. Users of these reports should be able to make
preliminary tool assessments based on the provided information. Information on pricing,

contact, support, process technology areas covered, intended users of the technology or tool,
intended application area, primary methodology base, hardware platforms, and general tool

capabilities is included. The information in the reports was obtained either directly from the
vendor or from the vendor's literature. In most cases, the vendor has supplied the

information.

There are tools in the tool lists for which there is no associated technology
product sheet. This condition occurs because there was insufficient available information to

create the technology product sheet, either because the vendor did not supply information in
time for publication or because the tool was added to the tool list too late for the creation of a
technology product sheet.

The STSC can be contacted for both unpublished and updated reports that may be
available. For information on how to order updated reports and/or Volume II of this report,

contact the STSC customer service department at (801)777-7703 or DSN 458-7703, fax to
(801)777-8069 or DSN 458-8069, or email to godfreys@wpo.hill.af.mil.

66

Appendix C: Process Technology Tool Critiques

Appendix C - Process Technology Product Critiques
(See Volume II)

67

Software Technology Support Center

Volume II of this report contains a number of method/tool critiques and a

template that can be used for additional process method/tool critiques. We welcome input

from readers of this report who have used process technology methods and tools and would

be willing to share their experiences with others, and for that reason, a critique template has

also been included here in Volume I. All user critiques are written by actual tool users.

Editing by the STSC is kept to an absolute minimum. A critique has seven sections: (1)

Reviewer's Background Information, (2) Tool Name, (3) Project Information, (4) Notable

Strengths, (5) Notable Weaknesses, (6) Advice for Potential Users of Method/Tool, and (7)

Vendor Comments. The purpose of the Reviewer's Background and Project Information

sections is to give a critique reader an idea of the background of the evaluator and the nature

of the project using the method/tool so that the applicability of the critique to the reader's

context can be judged. Actual names of reviewers or reviewer affiliations do not appear in

this report. The Strengths, Weaknesses, and Advice for Potential Buyers sections allow free-

form commentary about the tool by the evaluator. The Vendor Comments section is allows

for vendor response.

For information on how to order Volume II of this report, please contact the STSC

customer service department at (801)777-7703 or DSN 458-7703, fax to (801)777-8069 or

DSN 458-8069, or email to godfreys@wpo.hill.af.mil.

68

Appendix C: Process Technology Tool Critiques

Sample Product Critique Sheet
Reviewer's Name:
Company Name:
Position/Titie:
Main Duties:

Tool used for software process: _
Years of software experience: _
Years of experience with the tool
Last time tool used:

Currently 6 months

I am a software:
Manager Engineer

Date of Review:

lyear

yes/no

>lyear

Programmer Novice

Tool Name:
Vendor
Version:
Hardware platform:
Operating system: .
Memory used:
Disk space used: _
Enhancements:

(accelerator, large monitor, graphics card, etc.)

Overall impression of the tool?
Excellent Good Fair Poor

Quality of vendor support?
Excellent Good Fair Poor Unknown

Project Information:

Notable Strength(s) of the Tool:

Notable Weakness(es) of the Tool:

Advice for Potential Buyers of this Tool:

Vendor Response:

STSC Product Sheet Version 2.1

69

Software Technology Support Center

(This page is intentionally left blank)

70

Appendix D: Process Technology Taxonomy

Appendix D - Process Technology Taxonomy

71

Software Technology Support Center

D.l Evaluation Taxonomy for Process Technologies

In order to facilitate the evaluation of process technologies, checklists are
provided for assessment methods, modeling methods, modeling tools, and SEEs designed for
software process model enactment. Each checklist incorporates two types of entries:

(1) Entries that represent attributes that can be checked if a technology has the

given attribute.

(2) Entries which provide a list of options, one of which can be checked for the

technology being evaluated.

These checklists can be used to characterize the features, strengths and
weaknesses of a technology and hence assist the user to choose methods or tools with the
appropriate attributes for a given project.

In the checklists provided for process technology methods and tools, an effort was
made to include in the list entries that can be determined quantitatively. Entries are provided
for functional characteristics. For methods, entries are also provided for level of tool support
available for the method; for tools, specific entries allow the level of support a particular tool

supports to be indicated.

Quality characteristics are not included in the checklist. However, when
distinguishing between methods and tools with similar functionality and level of tool support,
quality characteristics, which often cannot be quantitatively measured, must also be
considered. Therefore, a list of pertinent quality characteristics for process technologies are
provided in section D.1.3.

Functional characteristics, level of tool support, and quality attributes are discussed

in sections D. 1.1, D.I.2, and D.1.3 respectively.

72

Appendix D: Process Technology Taxonomy

D.1.1 Functional Characteristics

Functional characteristics for each technology level, to a very detailed level, have

been provided. Such characteristics have to be considered carefully when methods, tools or

environments are selected because it is at this level of detail that tradeoffs are made and

priorities are set.

Some major input to the organization of the list of enactment characteristics was

provided by the "Reference Model for Frameworks of Computer Assisted Software

Engineering Environments47." Many of the process assessment characteristics were taken

from Watts Humphrey's book, "Managing the Software Process48," and Terry Bollinger's

article, "A Critical Look at Software Capability Evaluations49." Some of the process

definition characteristics were taken from Marc Kellner's article "Software Process

Modeling: A Case Study50." A number of others, in particular characteristics which allow

one to evaluate the representative power of a process definition approach, were adapted from

a list of process description characteristics included in the Software Productivity Consortium

document, "Process Definition and Process Modeling Methods51."

D.1.2 Level of Tool Support

Tool support can vary from minimal support at one extreme to full environment-

assisted support at the other. For process assessment, assessment procedures may be

provided in manuals, on-line help may be available, or there may be some limited integration

of tools available to support the assessment process. Similarly, modeling methods may be

supported with a written description of the method at one extreme and full tool support in a

process-driven SEE at the other. Modeling tools may provide various levels of support.

Enactment technologies can lead to human enactment or computer enactment; support of a

47 "A Reference Model for Frameworks of Computer Assisted Software Engineering Environments," NIST
draft version 13, prepared by the NISTISEE Working Group, July, 1991.

48 Humphrey, Watts, Managing the Software Process, Addison-Wesley Publishing Company, Inc., 1989.

49 Bollinger, Terry, B., McGowan, Clement, "A Critical Look at Software Capability Evaluations," IEEE
Software, July, 1991.

50 Kellner, Marc I., Hansen, GA., "Software Process Modeling: A Case Study," IEEE, 1989.

51 Lai, Robert, "Process Definition and Process Modeling Methods," Software Productivity Consortium, SPC-
91084-N, 1991.

73

Software Technology Support Center

defined process or control of the process. The evaluation checklists ask the evaluator to

specify the level of support by choosing a level of support from the following five levels:

(1) Manual-Based Methodology Support. Manual-based process methodology

support refers to the level of support in which standards, manuals, documents,

and practices are provided for method practitioners to follow. However, no

level of electronic tool support is available.

(2) Method Definition Available On-Line. The process practitioners are expected

to follow is provided on-line (electronically). Though standards, manuals,

documents, and practices are provided on-line within a software engineering

environment, preferably in some hypertext/hypermedia form, this level of

support provides no further automated support for carrying out the process.

(3) Limited Integration of Tools Supporting Process. At this level, additional

support for carrying out the defined process is provided by tools that are either

not integrated or provide limited integration. Interaction between tools will

most likely be file-based interaction. Methodology guidance may be tied into

tool invocation scripts or in logon and logoff scripts.

(4) Process-Supported SEE. In a process-supported SEE, the main unit of work is

the invocation of tools. This level of support can also include monitoring

activities in the environment and the ability to present to each user the

appropriate current view of the development to select the next activity from

choices that are appropriate. A project member logs in and is presented with the

available activities that can be performed by the user. The user then selects an

activity, which results in either a screen of subprocess activities or results in

direct invocation of applications for work. Such a system leads the user through

steps by presenting a choice of activity-specific menu options and then returns

control to the user to perform creative aspects of a task. Strict guidance can be

provided by the system or, alternatively, the system can provide advice and a

series of options. Integration of tools where tools interact through the SEE

database is customary at this level of support.

(5) Process-Driven SEE. In a process-driven SEE, the main unit of work is the

invocation of process steps, where tools and data are then made available for

74

Appendix D: Process Technology Taxonomy

performing each process step. At this level of support, action item messages are
sent to project members when they log in with appropriate instructions for

accomplishing activities. Completion of one action item creates another action
item that must be addressed. This level of support emphasizes control goals.
Some necessary work steps may be automatically executed by the environment.
Fundamental interaction with the environment framework is assumed.
Knowledge-based components and a rule-based approach are customary at this
level of support. In a rule-based approach, activities are described by rules with
pre- and post-conditions. In general, the SEE promotes a mutual assistance
between a well informed initiative engine and human developers.

D.l3 Quality Attributes

Evaluating methods, tools, and environments in terms of overall quality and the
quality of each supported functional capability will permit the evaluator to differentiate
between entities with equivalent functionality. Though quality attributes cannot, as a rule, be
quantitatively evaluated and therefore are not included in the checklists, guidelines are
provided here to facilitate the assessment of quality when distinguishing between
tools/methods/environments of similar functionality. The following comprehensive list of
quality attributes are taken from Rome Air Development Center's "Specification of Software

Quality Attributes: Software Quality Evaluation Guidebook52." The Rome study defined
quality attributes for delivered software. Nevertheless, with some tailoring, the

characteristics apply equally well to methods, tools, and environments.

While this is a comprehensive list, depending on the technology being evaluated,
a subset of quality attributes will sometimes be most useful when distinguishing between
methods, tools or environments with equivalent functionality. For example, when evaluating
assessment methods, the quality characteristics of efficiency, usability, verifiability and
expandability are most important. For the evaluation of modeling methods, the quality
characteristics of efficiency, verifiability, usability, and reusability are most pertinent, with
the most important quality characteristic being usability. However, when looking at

52 Bowen, Thomas P., Wigle, G. and Tsai, J., "Specification of Software Quality Attributes: Software Quality
Evaluation Guidebook," RADC-TR-85-37, Rome Air Development Center, Griffiss AFB, NY, February 1985. The Rome
study was later extended by the Ada Evaluation and Validation project, the purpose of which was to "provide information
that will help users to assess [Ada Programming Support Environments] APSEs and APSE components," Resulting in the
Ada E&V Guidebook, Version 3.0,14 February, 1991.

75

Software Technology Support Center

modeling tools or enactment SEEs, the entire list of quality characteristics must be
considered: efficiency, integrity, reliability, survivability, usability, correctness,
maintainability, verifiability, expandability, interoperability, reusability, and transportability.

(1) Efficiency. When judging the efficiency of a method, the ratio of the

effective or useful output to the total input of human effort must be considered.
In tool and environment evaluation, three areas that need to be looked at are
processor/human time to complete a task, secondary storage requirements for
computer-based tools/methods, and I/O/network considerations for
multiprocessor systems and/or multi-user systems. When a tool or environment
performs adequately with respect to these resources for a particular process
definition, modeling and/or enactment scenario, its efficiency is judged

acceptable.

(2) Integrity. Integrity needs to be assessed for tools and environments. Process
definition/modeling/management failures due to unauthorized access or the
corruption of the tool or SEE database will cause a low rating in this category.

(3) Reliability. Reliability also needs to be assessed for tools and environments.
Reliability can be defined as the absence of failures. Indicators such as
maturity, published error reports, and errors uncovered during testing will have
to guide the tool and environment assessment in this area.

(4) Survivability. Survivability deals with the ability of the tool or environment to
perform even when portions of the system have failed. This is a desirable
characteristic, especially in a distributed system (e.g., a client/server system).
Therefore, it is included in the quality list. However, this characteristic
probably will not serve as a distinguishing characteristic in environments being
evaluated today.

(5) Usability. Usability is the extent to which resources required to acquire,
install, learn, operate, prepare input for, and interpret output of a tool or
environment are minimized. User interfaces, user documentation, and extent of
training necessary must be evaluated.

76

Appendix D: Process Technology Taxonomy

(6) Correctness/Verifiability. Verifiability in terms of assessment or modeling
methods refers to the ability of the developers of the method to prove that
products produced using the methodology are complete, consistent, and correct.

For tools and environments, correctness is the extent to which tool or
environment design and implementation conforms to specifications and
standards. Verifiability gauges the extent of testing and verification of

correctness that has been completed for a tool or environment.

(7) Maintainability. Maintainability, as applied to software process tool and
environment technology, refers to the ability of the vendor or researcher to
deliver tool or environment maintenance in a timely manner.

(8) Expandability. Expandability is the ease with which a method can evolve: for
a tool, the ease with which current functions can be enhanced, and new
functions can be added; for a SEE, the ease with which new tools can be added
to a process-driven environment. Expandability also refers to the ease with

which the method, tool, or environment can be changed to meet new
requirements. It is an especially important characteristic when evaluating
process definition technologies and process-driven environments.

(9) Interoperability. Interoperability tests the ability of tools to communicate

with other tools (e.g., the extent to which open architecture standards are

adhered) and of environment databases to support the need for tools to exchange
information without conversion.

(10) Reusability. Reusability is the extent to which a component developed in one
application can be adapted for use in another application. This is an especially
important attribute for methods and tools supporting process definition. The use
of assets from a process definition library to define a software process is
probably essential given the formality and rigor necessary for adequate software
process definition.

(11) Transportability. Transportability is the ability of a tool or environment to be

installed in a different development configuration without extensive changes.
The number and variety of platforms and operating systems with which a tool or
environment can be used provides a good measure of its transportability.

77

Software Technology Support Center

D.2 Assessment

Process assessment technologies are defined as those technologies that enable an
organization to characterize the maturity of its process. An assessment should ideally
identify the most critical process issues and facilitate the initiation of process improvement

actions. Characteristics in the Assessment Method Checklist can be used to judge the
suitability of a particular assessment method.

78

Appendix D: Process Technology Taxonomy

Assessment Method Checklist

Assessment Method Checklist

Assessment method uses a rigorously proven standard or maturity model
Orderly, systematic assessment steps
Assessment method is driven by a standard set of questions
Grading system used:

Numerical grading system
Maturity level grading system
No explicit grading (neither leveled or graded; instead, a summary of
findings)

Assessment includes methods for recording and analyzing process issues
Assessment method requires process-modeling
Assessment of an organization's software process takes into account:

Management practices
Software process
Software Tools
Software Technology
Software Standards
Software Testing
Software process definition
Configuration controls
Quality assurance practices
Project estimation practices
Data collection and analysis practices
Defect prevention
Efficiency of practices used by an organization

Method is statistically reliable
Sufficient data and quality measures are gathered to permit reliable analysis
of complex organizational practices
Data collection and analysis approach:

Dense data approach **
Sparse data approach*

Level of tool support available:
Textual-based assessment procedure descriptions exist
Assessment procedures available on-line
Limited integration of tools available to support assessment process

A small number of widely spaced data points (e.g., small number of questions, with little overlap between
question topics) are used to assess maturity.

A large number of closely spaced data points (e.g., much information is gathered; many questions are asked
in each area of concern) are used to assess maturity.

79

Software Technology Support Center

D.3 Modeling

The terms "process definition," "process simulation," and "process modeling" are
often used interchangeably in the literature. The term process modeling is used in this
taxonomy to describe the process technologies that allow both definition and simulation of

the software process.

Methods that support process definition must support the definition of a software

process with a sufficient degree of formality. Characteristics in the Modeling Method

Checklist can be used to judge the suitability of a particular definition method.

While few tools targeted specifically for process modeling are being produced by
vendors at this point, tools built for other purposes can often meet the needs for process
modeling. A number of existing tools can be used to capture a process definition. In
addition, many tools currently available can assist in the simulation of a process definition.
Criteria in the Modeling Tool Checklist can be used to judge the suitability of tools for
supporting the area of software process modeling.

80

Appendix D: Process Technology Taxonomy

Modeling Method Checklist

Modeling Method Checklist

Type of process notation used:
Free-form English language descriptions
Semi-formal, structured English
Process programming language (e.g., MVP-L)
Graphical notation (e.g., Data-flow/SADT/IDEF/real-time structured
analysis type diagrams)
Set of declarative rules/knowledge-based definition
Formal machine-executable definition notation (e.g.. APPIVA)
Petri nets
State charts
System dynamics

Strategy for model building:
Build from scratch
Generic (building block) structure - using building blocks, asset
library, "build-to" templates for process component types and/or
process examples
Standard software process models which can be customized for each
project's needs

Process description:
 Permits necessary flexibility in the process
 Requires step-by-step following of the process
Support for multiple, complementary viewpoints of th<

Functional
Behavioral
Organizational (who implements the activities and where they are
implemented)
Data modeling

Support for hierarchical representation of a process - vertical decomposition
Support for multiple levels of abstraction
Support for the defining of software development as a dynamic and
distributed activity
Support for the representation and analysis of constraints on the process
(such as regulations, standards)
Support for definition of resource requirements:

Roles users take while performing a task
Software artifacts that are needed, created or enhanced during a task
Tools used
Information about a task's schedule and its expected duration

Support for creation and management of variants, versions and reusable
process description components

81

Software Technology Support Center

Modeling Method Checklist

Representative power:
Precision - the process description allows all necessary actions to be
specified
Scalable for different sizes of software projects
Automation can be applied on the process described
Communicable to humans

The method defines the following:
Process steps
The mapping of individual process steps to tools or humans
Pre-conditions for execution of a process step
Post-conditions for completion of a process step
What constitutes a process enactment state
Pre- and post-conditions for enactment
Constraints or policies to be checked or enforced during process
enactment
Project data operated upon, both input and generated
Process control services including overall specification of control
activities, sequencing, and generation of project plans
Allowable concurrency and synchronization (if any) with other
processes
Product and process metrics to be collected
Ability of method and its notation to support analysis:
Internal consistency checks
Completeness
Correctness
Definition support for the capturing of metrics and measurements
Definition notation allows simulation of the process

Approach can be integrated with other useful approaches - for example,
management (e.g., PERT) or analysis methods (e.g., CPM)
Level of tool support available:

Textual-based definition descriptions exist
Modeling method descriptions available on-line
Tool support of method (with limited integration to other tools)
Support of modeling method available in a process-supported SEE
Support of modeling method available in a process-driven SEE

82

Appendix D: Process Technology Taxonomy

Modeling Tool Checklist

Fully supports a process modeling method
Tailorable to support multiple process modeling methods

Modeling Tool ChecklisT

Tool is sufficiently independent so that a change in execution environment
in which it is being used does not impact the process description
Support for defining and using/reusing process assets
Capability for incremental evolution
Configuration management of models during development
Simulation:

Ability to simulate:
Concurrency
Asynchronous processes
Distributed development (i.e., shared information is not assumed)
Human interaction
Integration of software development tools
Iteration
Timing of process steps

Simulation capabilities are directly integrated with model representation
Interactive simulation/animation capabilities
Batch simulation capabilities provide a detailed trace
Capability to make predictions regarding the effects of change:

Qualitative: Looking at the behavior and reactions of the process to
various events and circumstances
Quantitative: Prediction of numerical outcomes (time-to-completion,
manpower requirements, quality measures)

Analysis support
Level of tool support available

Tool provides modeling definition/help on-line
Tool support for method; limited integration to other process tools
Tool is available as part of a process-supported SEE
Tool is available as part of a process-driven SEE

* Interactive simulation/animation capabilities such as the following: Simulation can be started from any valid
state of the process model; changes can be specified, and events be generated to emulate external influences or internal
changes; user can step through the simulation one step at a time.

83

Software Technology Support Center

D.4 Enactment

Process enactment technologies are defined as those technologies that will support

the execution of a software process definition. By this we mean any technologies which will
allow the process definition to be "installed" in the sense that the enacted definition will
manage and/or control the process, and capture measurements as the development process

proceeds.

Processes may be enacted by SEEs, tools, and/or humans. In each case, issues of

visibility, status, control and resource management must be considered when judging the

suitability of a particular enactment technology.

During enactment, visibility to product information as well as to process
information is necessary. An executing process will need access to product data, history, or
state in order to accomplish its goal. Project members will also require appropriate access to
product information as well as information regarding the status of a project. Management of
process state and history data is necessary at least to the level that will permit management
reporting on the state of process and project activities. State monitoring and event

management will also permit appropriate actions to be taken in response to process state.

In addition, numerous control services must be provided to permit such functions
as history/metrics collection, auditing and accounting, scheduling, configuration
management, quality assurance, and policy enforcement.

Finally, resource management services must be provided. In a software
development project, the people involved typically have roles to play throughout the project.
However, a person may have many roles during a project and the roles may change through
the project's life span. Process resource management services handle information about

people and roles, and the relationship between them.

The Enactment Technology Checklist is provided to assist in assessing the level
of support provided by enactment technologies and environments currently available.

84

Appendix D: Process Technology Taxonomy

Enactment Technology Checklist

Enactment Technology Checklist

Enactment approach:
Process-Control*
Process-Support'"

Execution environment:
Contains knowledge of the process
Provides support for tailored project-specific processes
Supports network-based collaborative development
Supports multiple platforms

Enactment tool/technology is:
Hierarchical
Intuitive to both user and the process implementor
Maintainable

Process execution drives:
The creation of a plan
The scheduling of resource usage consistent with the execution
environment

Process visibility and scoping:
Access to information provided where appropriate
Visibility to information precluded where appropriate
Ability to associate control access rights with designated operations

Process state:
Work context memory
Status is attached to each task or action in the enacted software
process definition***
Access to the process' current status
Access to process definition information
Access to the state of work products

I

Involves action items with pre- and post-conditions that must be satisfied (control points); completion of one
action item creates another action item that must be responded to. Approach emphasizes control goals.

Monitoring activities in the environment allow the user to have an appropriate current view of the
development for selecting me next activity from choices which are appropriate. Approach emphasizes support

Such as no status, allocated, ready, active, stopped, broken, done, not available for execution.

85

Software Technology Support Center

Enactment Technology ChecklisT

Process control:
Workflow
Process metrics collection service
History collection
Policy enforcement
Query capability

Process resource management:
User role management service
Role definitions

Level of support:
Human enactment
Limited tool support for enactment
Process-supported SEE
Process-driven SEE

86

Appendix E: IDEF Technology

Appendix E - IDEF Technology

87

Software Technology Support Center

E.l Case Study

In Section 1.4, major modeling approaches that can be and have been successfully

used for process modeling were presented and discussed. After a careful evaluation of these
modeling approaches, the STSC is recommending the use of IDEFO for software process
modeling to its customers. In this section, reasons for that recommendation will be given, as
well as an overview of the EDEF family of methods and tool support for IDEFO,
IDEFI/EDEFIX, and IDEF3 modeling methods.

The information in Appendix E was collected as part of a case study performed

during spring 1992. The purpose of this study was to investigate the current state of process
technologies and then choose a promising method based on our process requirements to be
used on pilot projects. In this ever changing field, the timeliness and correctness of
tool/method information is imperative, but difficult to keep up with. View this information
in this appendix intelligently; understand that it does not address every vendor/tool/detail of
IDEF. Using this as a building block, remember that it is a good business practice to contact
the vendors and get the most current information, always being aware of new
technologies/tools/vendors that come about in the process community.

E.1.1 STSC Modeling Technology Requirements

To assist us in keeping sharp focus of the case study goals, certain requirements
were defined and reviewed. The following information is taken from the study, and is

explained in detail below.

To define the STSC requirements for process definition technology and
understand the need for such technology, an understanding of the STSC's customers and their
problems is necessary. Studies have shown that almost all software organizations can be
characterized as having an initial (SEI CMM Level 1) or repeatable (Level 2) process

maturity. Very few organizations, and none of the STSC's customers to date, have mature
(Level 3: Defined, Level 4: Managed or Level 5: Optimizing) processes. A variety of
technological and managerial solutions are needed to address the needs of these STSC
customer organizations. Process definition technology is one of these technologies.

88

Appendix E: IDEF Technology

The primary STSC functional requirement for a process definition method is that

it must adequately capture and document a software process for the purpose for which the
model is being used. There must be sufficient formality and rigor in the method to allow
processes to be modeled faithfully. Ideally, there should be support for multiple,
complementary views of the process. The method should produce a structured definition and
provide techniques for composition and decomposition. In addition, technical growth aspects
that are desirable include support for incremental stages of process building, tool support for
simulation, ability to be used for enactment of the software process, and the existence of

well-defined analysis techniques that can be applied to the model.

Process definition in level 1 and 2 organizations will be used primarily to identify
process improvement opportunities, facilitate training of team members in the organization's
standard software process, and facilitate communication about processes throughout the
organization. Thus, a fundamental requirement for the method is its understandability. If the
method and its notations are going to be used for communication, often between people of
different technical levels, the notations must be easily understood. The method and notation
must also have a fast learning curve. Additional requirements are effective tool support and a
high probability of the method's acceptance in the software community. This likelihood of
acceptance should be based on the usability and effectiveness of the method, the existence of

a support base for the methods (e.g., users groups, newsletters, bulletin boards, etc.),
familiarity with similar methods, and/or acceptance of the method as an emerging standard.
A tested, widely-used approach with a good track record is most desirable.

E.1.2 IDEFO Method Recommendation

One of the goals of the case study was to target a methodology as the best fit at
that time given our requirements. The results of this goal are discussed below.

In Section 1.4, the strengths and weaknesses of major modeling approaches were
discussed. It is important to note that it would be premature to point to a particular process
definition technology as the one correct way to define the software process. There is no clear
consensus about which method is best, possibly because either none of the existing
techniques is ideally suited to the problem or the problem is so broad that no one technique
can be ideally suited. Therefore, any method recommendation has to be made with the

89

Software Technology Support Center

caveat that research and development in this area continues and significantly more suitable

techniques may be on the horizon.

A summary of evaluation results mapped against STSC requirements appears in

Table E-l. Certain categories (Process Modeling Track Record, Likelihood of Acceptance
for Software Process Modeling, Modeler Learning Curve and Reader Understandability)
were rated on a subjective scale after surveying the field. They are scored on a scale of 0 to
4, with 0 being worst and 4 best. "Yes/r" in the tool support column of the matrix indicates
the situation where tool support consists mostly of research prototypes and commercial tools

do not exist.

No method can be recommended as the one suitable method for all process

definition. However, after studying the available methods with regard to the requirements of

the STSC, structured graphics methods were recommended because of their familiarity,
understandability, maturity, available tool support, and widespread use in the industry for
process definition. The graphical hierarchical representation and data-flow-like diagrams
offer the readability of data flow diagrams for software process modeling, thus facilitating
communication and understanding. In addition, these methods have been successfully used

90

Appendix E: IDEF Technology

Process
Modeling Track

Record53*
Likelihood of

Acceptance for
Software Process

Modeling*
Modeler Learning

Curve*

Reader
Understandability*

Analysis Methods

Tool Support for
Simulation

Can be Used to
Support Computer

Enactment
Tool Support

Capture and Document
SW Process?

Structured Analysis Yes Yes No No Some 4 4 3 3

IDEFO Yes Yes No No Some 4 4 4 4

Real Time Structured
Analysis

Yes Yes No Yes Some 2 3 3 2

Process Programming Yes Yes/r Yes Yes Some 1 2 1 2

System Dynamics Yes Yes No Yes Some 2 3 2 3

Petri Nets Yes Yes Yes Yes Yes 0 0 0 3

Rule Based Yes Yes Yes Yes Little 1 1 1 2

Object Oriented Yes No No No Some 2 2 2 1

Entity Process
Modeling

Yes Yes No Yes Yes 2 2 3 2

Table E-l. Modeling Method Survey Results

54. This is a subjective criteria and is scored on a scale of 0 to 4, with 0 being worst and 4 best.

91

Software Technology Support Center

and are in widespread use by the process definition community. Three major variants of

structured graphics - structured analysis methods54, structured analysis methods with real

time extensions,55 and IDEFO - were considered.

The IDEFO functional modeling approach was chosen for a number of reasons.

IDEFO was designed for process modeling, whereas other structured analysis techniques

grew out of analysis techniques used for software development. The standardized graphical

syntax used in IDEFO diagrams (as contrasted with free form data flow diagrams) makes

IDEFO diagrams easier for the reader to follow. IDEFO provides excellent activity

decomposition and hierarchical structure. The IDEFO method also provides the ability to

build a large model using multiple sub-models. IDEFO features - such as feedback arrows to

indicate the need for rework, control arrows, mini-specs associated with the diagrams at all

levels, and IDEFO configuration management - also make IDEFO superior for process

modeling. Mechanism and control arrows in the IDEFO diagram allow the modeler to show

who or what performs a given activity. These arrows also allow the separation of input from

control. Tool availability of IDEFO, as with all structured analysis methods, was considered

mature. IDEFO tools are available on several platforms and several tools allow platform

interoperability.

Not only do IDEFO models form the basis on which to build the requirements for

improvement, but IDEFO can also be used as a training tool, can be used for process

optimization, and can be used for problem solving. Using IDEFO graphics as a thinking tool

has the potential to provide a powerful and cost-efficient way to improve the software

development and maintenance process. Experienced users of IDEFO praise the method for

producing easy-to-understand, structured information. IDEFO diagrams are far easier to

understand than bubble-type data flow diagrams with unstructured mazes of arrows. In

IDEFO diagrams, each page has a definite structure. However, diagrams produced by IDEFO

have fairly sparse information content; they are vague about concurrency details, conflict for

resources, rules for feedback, and timing. As a result, models must be extended to allow

simulation or enactment. To get a usable, transferable model that is understandable to

someone without firm domain knowledge, it is necessary to supplement the basic IDEFO

54 DeMarco, T., "Structured Analysis and System Specification," Yourdon Press, New York, 1978.

55 Hatley, D.J., and Pirbhai, I.A., "Strategies for Real-Time System Specification," Dorset House, 1987.

92

Appendix E: IDEF Technology

diagrams with significant information. IDEFO is flexible enough to allow this, but it is
necessary to have knowledge of what information needs to be added and have the discipline

to add this necessary information.

IDEFO has seen extensive use worldwide. It has been used in such areas as
hardware and software development, telecommunications, manufacturing, command and
control, and real-time banking. IDEFO has been used extensively in the commercial
marketplace for business process redesign. It is also extensively used by the government
market for business case analysis. The DoD Corporate Information Management Program
(CIM) is using IDEFO. In addition to the DoD CIM program, IDEFO is a functional
modeling standard for the U.S. Air Force manufacturing programs (MANTECH), the CALS
Concurrent Engineering Initiative, the DoD Industrial Modernization Incentive Program
(IMIP), and the Advanced Manufacturing Program (CIM-OSA). With the recent interest in
software process technologies and software process improvement, IDEFO methods have seen
increased use in the software sector as well. The widespread use and understanding of
IDEFO diagrams and mature tool support available make IDEFO a good choice, particularly
for organizations being introduced for the first time to modeling technology.

E.1.3 IDEF Family of Methods

IDEF is a set of methods and notations, accepted as standards by the IDEF Users
Group (representing both government and commercial interests) and maintained by the Air
Force. Over time, numerous IDEF graphical techniques have been developed. The IDEF
family of methods has been designed to support system description, modeling, and
simulation. IDEF methods are called a "family" of methods because they are all formulated
to support a common objective: the analysis and design of complex systems. Having
multiple methods in the family is intended to supply special-purpose methods with

applications limited to specific problem types rather than a super method that attempts to

address all problems.56

56
 Much of the material about the IDEF family in Section E.13 comes from the following source: Mayer,

R.J., Painter, M.K., deWitte, P.S., "IDEF Family of Methods for Concurrent Engineering and Business Re-engineering
Applications," Knowledge Based Systems, Inc., 1992.

93

Software Technology Support Center

IDEFO, the most mature and widely used of the IDEF methods, was derived from
the Structured Analysis Design Technique (SADT) method and supports the functional
modeling of a system. While newer IDEF methods (IDEF1, IDEFIX, IDEF2, IDEF3,
IDEF4, IDEF5, —) have each been developed to address known and obvious voids in
existing methods, the decision was made to develop a family of methods rather than to re-
formulate or revise existing methods. Each method can be highly effective for system
description from a particular viewpoint. One method is not right and another wrong. Later
methods, such as IDEF3, are not intended as replacements for earlier IDEF methods. The
methods are additive, complementary. Therefore, the question is not, "What method is best?"

but, "What method is most directly pertinent to the task at hand?" It is often useful to utilize

more than one IDEF method to get the deepest understanding of a process - for example,

IDEFO for the functional view, IDEF1/IDEF1X for data modeling.

IDEFO is widely used for functional modeling, concentrating on activities
performed, and providing a static description of a system. IDEF1 concentrates on data
modeling and is used primarily for information modeling, business data modeling, and
relating data records hierarchically. IDEF1X, an extension to IDEF1, is used to support
database design. IDEF2 is a simulation IDEF that is now largely out of use; it has been
recommended, though not approved, as a standard. There is little tool support for IDEF2;
however, the whole discussion of a simulation IDEF has led some vendors to add vendor-
specific, non-standard simulation notations, methods, and capabilities to their own toolset.
IDEF3 is a process description method that aids knowledge acquisition by providing a

method and representation medium to support the capture, storage, and manipulation of real-

world descriptions of a system in an event-model style. IDEF3 shows how activities are

time-related or sequentially-related. The behavioral aspects of an existing or proposed
system can be captured. The main description mechanism is the process flow description
diagram, which describes an ordered sequence of events or activities. To supplement process
flow diagrams, major objects in the system are described using object state transition network
diagrams that summarize the allowable transitions of an object. IDEF3 has not yet been
accepted as a standard by the Air Force or by the IDEF Users Group. IDEF3 tool support is
relatively limited. IDEF4, IDEF5, et al. are little used and not standardized; many of these
additional methods are manufacturing-oriented and domain-specific. The more standardized
IDEFO and IDEF1/EDEF1X appear to be best suited for software process definition and are

the IDEF methods that a large number of process modelers in industry use. Consequently,
when evaluating IDEF toolsets, we have primarily concentrated on toolsets that support
IDEFO and IDEF1/1X.

94

Appendix E: IDEF Technology

E.1.4 IDEF Family Method Integration

As the case study progressed, customers often showed interest in the integration
capabilities between the different areas of the IDEF technology. For this reason, we spent

some time investigating this, and the results follow.

Although the IDEF technology is extremely useful and has a wide range of

applications, it is our opinion that some aspects of the tools supporting the methodology
remain immature. One such aspect concerns the data dictionary. A data dictionary defines

all information quantities in an IDEF model; it contains both definitions and structural
descriptions of the objects and activities of the system being studied. Unfortunately, IDEF
toolsets do not have a good data dictionary compared to data dictionaries supplied by the
average structured analysis toolset. In general, vendors have developed varying levels of
data dictionary/repository support for their tools. Without question, an increased level of

integrity and integration support is needed.

When developing large-scale models in IDEF, it often becomes necessary to use
more than one IDEF methodology. The different flavors of the IDEF methodology allow the
modeler to represent the system from different perspectives. In investigating the issue of
sharing records/types in a data dictionary between tools supporting the IDEFO and IDEF IX
methodologies, several problems were encountered. Most importantly, there is no standard
method of integrating or hand-shaking data between IDEFO and IDEF1X tools. The level of
interfacing between the two is left to the discretion of tool vendors. As a result, users
wishing to have a seamless sharing of data dictionary information often find that a large
amount of additional effort is necessary to achieve this. Increased integrity in the data
dictionary is also needed. When records or types are used in several places and across
methodologies (IDEFO and IDEF1X for instance), any modifications to these records or types
should be reflected in all instances. Being forced to manually modify all instances of a
record or type conflicts with the whole purpose of types - to provide a one-point source of

change across the board.

A third related problem involves the availability of records/types already defined
by the user. IDEF tools do not support the use of a common data dictionary when the
modeler uses more than one IDEF method. After modeling in IDEFO and creating records in
the data dictionary, it seems logical that, when you begin creating other IDEF models, you
should be able to make use of the types you have already put in the database. Some tools

95

Software Technology Support Center

require you to enter these types into the data dictionary a second time when it is to be used in
a second IDEF method. In addition, there often is no link between these identical types
across the different methodologies. Because of this, the diagrams are harder to maintain and

may often not be accurate.

Tool vendors need to consider a more open-systems approach to their IDEF tools.

An open-systems approach would lead to increased productivity when incorporating a data
dictionary into IDEF models, and encourage more non-users to begin using these tools the

data becomes useful on several levels.

A summary of tool vendor support for tool integration, particularly in providing

links between IDEFO and IDEF1X tools, follows. The matrix indicates whether or not a tool
supports IDEFO and/or IDEF1X, provides information about links between IDEFO and
IDEF1X tools, hardware platform information, cost information, vendor contact information,

and notes on integration capabilities.

TOOL

IDEFO
IDEFlx

LINKS TO IDEF» & IDEF1X
TOOLS

WINDOWS 386 CLASS
MACHINE

$$
• J*M-

VENDOR CONTACT

NOTES

AIO

IDEFO V
IDEFlx

ASCII export is currently the only
link to other tools.

DOS, Windows

DOS: $1695/copy
Windows: $2995/copy
Discounts for volume sales

David N. Rice
Project Mngr - IDEF tools
Knowledge Based Systems
International
One KBSI Place
1408 University Drive East
College Station, TX 77840
phone:(409)260-5274
fax: (409)260-1965

KBSI has a wide range of
IDEF tools, including those
supporting IDEF3.

AIIX

IDEFO
IDEFlx V

1

ASCII export is currently the only
link to other tools.

Windows

$5000/copy
Discounts for volume sales

David N. Rice
Project Mngr - IDEF tools
One KBSI Place
1408 University Drive East
College Station, TX 77840
phone:(409)260-5274
fax: (409)260-1965

This tool supports both
IDEFlandlDEFlX.

96

Appendix E: IDEF Technology

Authormate

IDEFO V
IDEFlx

ASCII export is currently the only
link to other tools.

DOS (can still be run in Windows
environments)

$2500/copy
$2000/copy for 5+copies
$1500/copy for 25+copies

Al Irvine
Eclectic Solutions Corp.
5580 La Jolla Boulevard
Suite 130
La Jolla, CA 92037-7692
phone: (619)454-5781
fax: (619)459-3025

At the Spring '93 IDEF
conference, the vendors
announced a link between
Authormate and Evergreen
CASE Tools'IDEF1X tool
EasyCASE. In this link,
Authormate processes their
IDEFO models and identify
which types are likely
candidates to be included in
an JDEF1X model.

AutoSADT

roEFO V
IDEFlx

ASCII export is currently the only
link to other tools.

Macintosh, PC Windows

$495

Doug Bernard
TRIUNE Software
2900 Presidential Dr. Ste240
Fairbom, OH 45324
ph: (513)427-9900
fax: (513)427-9964

Mac and PC Windows tool
that is very affordable.

Design/DDEF

IDEFO V
IDEFlx V

No common link in the data
dictionary between the IDEF 0 and
IDEF1X sections of this tool.

Windows, Macintosh, Sun SPARC,
HP Workstations

$4000/1-4 copies, discounts for
volume sales.

Robert L. Seltzer
Meta Software Corp.
125 CambridgePark Drive
Cambridge, MA 02140
phone: (617)576-1203
fax: (617)661-2008

The same data dictionary is
used for IDEFO and
JDEFlX,butnolink
between the two
methodologies is apparent,
even with Sie common
database.

BPwin

IDEFO V
IDEFlx

Supports DDE (Dynamic Data
Exchange)

PC w/Windows

$1995/copy

Ronnette Kelly
Logic Works, Inc
1060 Route 206
Princeton, NJ 08540
Phone: (609)252-1177
FAX: (609)2521175
CompuServe:
70262,1135@compuserve.com

Supports IDEFO and allows
the user to capture all
information necessary to
create complete IDEFO
kits. BPwin also supports
Activity Based Costing.

ERwin-ERX

IDEFO
IDEFlx V

ASCII export is currently the only
link to other tools

Windows

$2500/copy
Discounts for DOD customers
and volume sales.

Jeffrey D. Mershon
Manager, Product Support
Logic Works, Inc.
1060 Route 206
Princeton, NJ 08540
Phone:(609)252-1177
FAX: (609)2521175
CompuServe:
70262,1135@compuserve.com

Entity Relationship
database design tool that
help the user quickly
design and build databases
using an intuitive graphical
approach.

97

Software Technology Support Center

IDEF
Leverage

roEFO V
roEFlx V

TBD

IBM Mainframe, VAX Workstations

IBM $45K-$65K
VAX $10K-$30K

B. Neil Snodgrass
Senior Vice President
D. Appleton Company, Inc.
222 W. Las Colinas Blvd.
Suite 1141
Irving, TX 75039
phone: (214)869-1066
fax: (214)869-1099

This company is primarily
in the business of selling
their expertise and
consulting, often selling
their tools in the process.
However, selling tools is
not their highest priority.

IDEFine-0

IDEFO V
IDEF lx

Wizdom's IDEF Glossary product
creates an integrated glossary of each
ICOM in the IDEFO model and the
entities and attributes in the IDEF1X
model. It provides a reference for the
user as to where each term is used. It
maintains consistency across models.

DOS (can be run in Windows
environment)

$5000/copy (including
glossary). Discounts for
volume sales on any of
Wizdom's tools

KristyHanna
Wizdom Systems
1300 Iroquois Avenue
Naperville,IL 60563
phone:(708)357-3000
fax: (708)357-3059

Windows version available

IDEFine-lx

IDEFO
IDEFlx V

Wizdom's IDEF Glossary product
creates an integrated glossary of each
arrow/connection in the IDEFO
model and the entities and attributes
in the IDEF1X model. It provides a
reference for the user as to where
each term is used. It maintains
consistency across models.

DOS(can be run in windows
environment)

$3500/copy. Discounts when
buying more of the same or
different Wizdom Systems
tools

Kristy Hanna
Wizdom Systems
1300 Iroquois Avenue
Naperville, IL 60563
phone:(708)357-3000
fax: (708)357-3059

Windows version available

ModelPro

IDEFO
IDEFlx V

ASCII export is currently the only
link to other tools.

Windows, Macintosh

$1200/copy

B. Neil Snodgrass
Senior Vice President
D. Appleton Company, Inc.
222 W. Las Colinas Blvd.
Suite 1141
Irving, TX 75039
phone: (214)869-1066
fax: (214)869-1099

A common repository
effort is under
development This
company is primarily in the
business of selling their
expertise and consulting,
often selling their tools in
the process. However,
selling tools is not their
highest priority.

E.2 IDEF Tool Survey

Special emphasis has been given in the modeling tool list to IDEF tools, given the
selection for STSC use. This section summarizes the primary requirements for tools
supporting IDEF from the STSC's perspective and provides supplementary material on

available IDEF tools.

98

Appendix E: IDEF Technology

The basic STSC functional requirement for an IDEF process definition tool is
support for IDEFO. Support for data modeling through IDEF1 or IDEFIX support is
important but is not initially crucial for STSC efforts. Secondly, the ideal IDEF modeling
tool should non intrusively support the modeling activity. If an IDEF tool is going to be used
by the modeler as a thinking tool, it must be easy to use - the modeler should not have to
change the processes in order to accommodate the tool. And, finally, the STSC will need to
support process definition on a number of different desktop platforms. The PC architecture

must be supported at the STSC. However, the STSC cannot place platform requirements on

its customers; therefore, as a further requirement, a wide range of commonly available

desktop platforms must be supported by the STSC's process definition tools. This
requirement may be met by a suite of tools with some form of bridging built between them.

Information on available IDEF tools was gathered from the following sources:
the IDEF Users Group,57 CASEBase,58 RAD'92,59 Tool Finder/Plus,60 and personal

knowledge. The following IDEF tools were identified: Design/DDEF from Meta Software
Corporation, AIO, All, and ProCAP from Knowledge Based Systems, Inc., ModelPro from
D. Appleton, IDEFine from Wizdom Systems, Inc., Authormate from Eclectic Solutions
Corp., AutoSADT from TRIUNE Software Inc., Erwin and BPwin from Logic Works, and

SIMprocess (a simulation tool for Wizdom Systems with no IDEF modeling capability) from
CACI. Tool survey information is summarized in Table E-2.

" The IDEF Users Group is a forum for the sharing of information and experience on issues related to IDEF
and associated methods. Conferences are held quarterly. The conference attended in May 1993 featured tutorials, product
and service displays, conference sessions, and workshops, and provided much information on the current state of IDEF
modeling and tools.

58 CASEBase is a product of P-Cube Corporation, Brea, CA; Copyright 1990,'91'92: "CASE Product
Comparison Information."

•" Requirements Analysis and Design Tools Report, Software Technology Support Center, Ogden
ALC/ITSE, Hill AFB, Utah, April 1992.

60 Tool Finder/Plus is a PC-based, CASE tool database with automated search capabilities available from the
C/A/S/E/ Consulting Group, Lake Oswego, Oregon.

99

Software Technology Support Center

Platforms
IDEFlorlDEFIX

Support
IDEFO Support

Design/EDEF Yes Some IBM PC, Mac, and SPARC
(interchangeable)

AI0,AI1,AI1X Yes Yes IBM PC

IDEF Leverage Yes Yes IBM Mainframe; VAX

IDEFine-0 & IX Yes Yes IBM PC, Sun

Authormate Yes No IBM PC and VAX

AutoSADT Yes No Macintosh

BPwin Yes No IBM PC

ERwin No Yes IBM/ Macintosh

SimProcess No No IBM PC, Macintosh, UNIX

Table E-2. IDEF Tool Survey Results

E.3 IDEF Training

Many of the STSC's customers were using, or were interested in using, the IDEF
technology. We thought it would be extremely important to aid them in finding proper
training for the different levels of IDEF usage that exist. All too often tools are bought and
never used because proper training was never acquired. We had a goal of assisting
organizations learn about process tools, but additionally give them information on where to
look for training to get them up and working in the targeted methodology area.

When considering the IDEF technology for a software process modeling group,
there are several crucial issues that need to be addressed. These issues include understanding
what you expect from IDEF, researching IDEF vendors for a tool that fits your needs, and
researching IDEF training sources. Training should be considered of extreme importance
because a modeling group may have an exceptional tool and well thought out goals, but,
without proper training, IDEF modelers will be substantially less effective. It takes proper
training and an iterative review process for useful and correct models to be produced. How

100

Appendix E: IDEF Technology

roles should be distributed in a modeling group is discussed in this section. Different
categories of IDEF training according to modeling roles will be presented, as well as

guidelines for what is expected of people in these training categories.

There are several different types of IDEF training. The IDEF Users Group
defines specific training categories which correspond to group member roles in an IDEF
modeling group. The following is an outline which summarizes responsibilities and

necessary levels of training for each role:

IDEF Authors

• Create diagrams and interview experts.

• Make comments to other authors about IDEF practice, alternate
decomposition, diagram changes, and analysis principles.

• Make comments to other authors about technical accuracy of a specific
application.

• Require an IDEF author's course and project workshop.

IDEF Reviewers

• Read diagrams for content and technical accuracy of material.

• Make comments to author on accuracy of diagram, appropriateness of the
decomposition, correctness of the interfaces, and diagram quality.

• Require both an IDEF reader and an IDEF reviewer course and project
workshop.

IDEF Readers

• Read diagrams for content.
• Make informal remarks on diagrams.
• Require an IDEF reader course and project workshop.

101

Software Technology Support Center

The philosophy of this type of tiered training is that correct distribution of group
roles is crucial. Every member of an IDEF modeling team does not need to be an IDEF
author, who has the skill and experience to extract information from documents and experts
and the ability to select information to be incorporated into an IDEF model. Instead, it is
beneficial to formulate a role scheme, where each role has a defined scope. In this way, each

group member can thoroughly concentrate on his/her specific role.

This method of organization brings with it a structure that is difficult to achieve
when all group members try to be everything to all people. Assigning different roles to group
members yields increased objectivity and heightens their effectiveness. For example, when
the roles are distributed, the reviewers have a level of separation from the authors, and are

therefore more objective.

Every member of the modeling group, including managers, should enroll in a
reader's course. The length of this course is typically one or two hours. Knowledge gained
from such a workshop will enhance communications within and outside of the modeling
group, while allowing all participants to benefit from the work done.

IDEF modeling, performed by the IDEF authors, is almost always more than a
one-person job and is often effective when performed by a small core of workers rather than
a large group. These authors will have the heaviest up-front work load. Members of the
author's team will be interviewing experts, reviewing documents, and examining information,
ultimately deciding what parts should be incorporated into the models. A comprehensive
course for authors will usually take about one week.

The reviewer group is often the same size as the author's group, or marginally
larger. IDEF reviewers should take an additional course specifically focusing on critiquing
models after taking the IDEF readers course with the rest of the group. A reviewer course

provides reviewers with extra insight into IDEF modeling. A course concentrating on IDEF

model review will usually be about one or two hours in addition to the reader's course.

While recognizing that the production of correct and useful models should be a
result of an entire team effort, some practitioners feel that the reader's course, taken in
isolation from the concepts taught in an author's course, is not really very helpful. They ask

102

Appendix E: IDEF Technology

the question, "Why not let everyone take the author's course?" In this view, even if the

students will be basically a reader of models, the extra information available in an author's

course will enable them to "read" an IDEF model with more understanding.

Whichever philosophy you subscribe to, when evaluating IDEF courses, it is
important to note that IDEFO is taught by a small number of teachers, a number of whom
frequently teach for multiple vendors. It is important to choose instructors who have actually
used SADT and/or IDEFO on major projects rather than instructors with limited experience
applying IDEFO. You want your instructor to have that major, hands-on experience.

An IDEFO course training matrix is provided in section E.3.1 with a
representative list of IDEFO courses. For each set of courses, length of course, use of process
examples, use of tools in the course, and the willingness to customize the course is indicated.
More complete information on each training course is provided in IDEF Training
Information Forms in Volume II of this report.

103

Software Technology Support Center

E.3.1 IDEF Training Matrix

D. Appleton

Eclectic Solutions

Knowledge Based Systems Inc.

Lipka SW Engineering. Inc.

Meta Software Corporation 3

New England Business Consultants

Productivity Solutions

Wizdom Systems, Inc.

UseSW
Process

Examples

T
T

Willing to
use tools in

Course

T
Ti
T
T

T<

T

Willing to
Customize

Course

T
T
T
%

T

T

Table E-3. IDEF Training Matrix

1 - Productivity Solutions (John Stockenburg) has never taught the IDEFO
author's course with tools. He usually makes use of paper and pencil. He's
familiar with a number of tools but the customer would have to provide
computers, software, etc.

2 - Steve Lipka's course is very tailored to the customer's needs. The last day in
his course is spent on the client's case problem.

3 - Meta Software offers consulting services, but is not in the IDEF training
business. They spoke highly of a few particular consultants that offer
training services and are familiar with Meta's Design/EDEF tool.

4 - Eclectic is really a business process company, but do have a SW process
example/case they can use.

5 - Eclectic is willing to use various tools, but are sensitive to the fact that,
because they are familiar with their own tool more than others, they don't
know what impact other tools will have on the course. Will it be a burden
to students? Is it robust? etc.

6 - NEBC will use tools if that is desired, but are concerned that the tools may
get in the way. They advise learning the methodology first, with tool
training later.

i

104

Appendix E: IDEF Technology

E.3.2 IDEF Training Information Forms (See Volume II)

The IDEF Training Information Sheets appear in Volume II of this report. For

information on how to order Volume II of this report, please contact the STSC customer

service department at (801)777-7703 or DSN 458-7703, fax to (801)777-8069 or DSN 458-

8069, or email to godfreys@wpo.hill.af.mil.

Volume II contains IDEF Training Information on the following companies:

• D. Appleton Company, Inc.

• Eclectic Solutions
• Knowledge Based Systems, Inc.
• Lipka Software Engineering, Inc.
• Meta Software Corporation
• New England Business Consultants

• Productivity Solutions
• Wizdom Systems

105

Software Technology Support Center

(This page is intentionally left blank)

706

Appendix F: Enactment Technology

Appendix F - Enactment Technology

107

Software Technology Support Center

Our analysis identified three mechanisms for achieving computer enactment:

1) An environment framework that provides a set of basic services for environment
construction can be used as the architectural basis of an enactment environment.

2) Vendors can provide customizable environments that provide a fixed process; in
such environments, the user can often make small modifications of particular

parts of the process.
3) Using a process model of the process, an environment can be built up "from

scratch" to support the model.

The separation between these three approaches is not always clear-cut, and there

is a great deal of variation in examples in a specific category. Nevertheless, keeping the three
basic approaches in mind helps us organize the great variety of work being done in this area.
These approaches will be further explained in the following sections, supplemented with
examples of products implementing each approach.

F.l Frameworks Supporting Enactment

Frameworks generally provide low-level services (e.g., data modeling, control and
user-interface support) that are needed in virtually all software production environments.
Some are also tool integration platforms. Examples of some frameworks are: Atherton

Technology's Software BackPlane, CAIS-A (Common APSE Interface Set), PCTE (Portable
Common Tool Environment), SLCSE (Software Life-Cycle Support Environment), DSF
(Distributed System Factory), and Hewlett Packard's SoftBench.

Atherton Software BackPlane is an open-systems object-oriented software
development repository that, because it is object-oriented, can store not only the data that is
created by a tool, but also the software engineering process as well. The BackPlane provides
repository services - version control, configuration management, consistent user environment

and interface, context management, access control - and allows user customizations and
extendibility. A new Atherton product, called Integration SoftBoard, will allow the type
hierarchy to be extended to include the behavior of any software engineering process written
in any programming language, thereby enabling a user to automate established development
rules and procedures or encapsulate rules and procedures that have previously been
automated. Atherton BackPlane has been used by organizations to build SEEs to integrate

108

Appendix F: Enactment Technology

CASE tools from multiple vendors. It has been used for process enactment by Loral

Corporation to define and then enact a standard software development process; BackPlane

was used to provide a common medium for tool control and interchange; the environment

built supported the multiple computing platforms used by Loral's divisions.

CAIS-A (under control of the Ada Joint Program Office (AJPO)) is a set of Ada

interfaces designed to act as a high-level virtual operating system, providing an object

management system on which process control can be based. The PCTE (Portable Common

Tool Environment) is a European standard that is seeing increased use as a basis for

integrating tools. SLCSE provides a framework, a common database, a set of common

schemata, and tools designed to support DoD-STD-2167A. Distributed Software Factory

(DSF) provides a framework for a distributed wide area network.

Hewlett Packard's SoftBench, based on the UNIX system, supporting X-

Windows, is a tool integration platform upon which a custom development environment can

be built. The basic framework includes a comprehensive set of integrated program

construction tools, most connected with the development of code (static analyzer, automatic

makefile generator, compiler, linker, builder, dependency graph generator, editors,

debuggers, etc.) Other tools spanning the full CASE life cycle have been integrated into the

environment by third-party vendors and by HP, and are available for an extra cost. A new

HP product called SynerVision is advertised as a "process engine." Customizable process

templates are used to define the architecture and the individual steps of specific processes. A

user can automate any process by adding templates and their own tools or tools of a third

party. A turnkey change request management environment called Change Vision, built using

SynerVision and sold by HP, combines metrics, reporting capabilities, and an interface to a

change request tracking system.

F.2 Customizable Enactment Environments

Customizable environments are based on the existence of a high-level, fixed

process and a core of services or capabilities. The construction method allows the user to

specify a set of extensions or changes to the core capabilities. This specification is then

combined with the core capabilities to form an environment. This set of approaches provides

an environment that is easier to instantiate than frameworks but less general than those that

can be created using frameworks. However, the line separating the two is not always clear.

109

Software Technology Support Center

The criteria used in this report to separate the two approaches is that frameworks, though
providing a variety of services, do not support any particular process; customizable
environments do support specific processes.

Much of the work in customizable environments comes from two specific
domains: information systems development and configuration management. The information
systems world seems to be well ahead of other software development application areas in the
process technology area, particularly in the area of computer enactment. Process
technologies developed for this application area are also advertised as supporting other

software application areas (technical, real-time, etc.) as well. This support is largely

untested. Often, when customizable environments are hard-wired to a specific vendor

process, the likelihood that it will be useful for other application domains is rather doubtful.
Even though some tailoring of the process is allowed, it is usually minimal. For the amount
of tailoring that would be necessary to make an information systems environment applicable
to another domain, it would probably be more straightforward, and the end result more
useful, to use a different approach to building an enactment environment. Nevertheless,
some of these process-specific enactment environments have been included in the
technologies represented in this report to support information-systems-type applications. The
other specific area with strong support for computer enactment is configuration management.
A number of turnkey configuration management systems are available commercially. These
cannot be considered to be enactment environments; however, some legitimate computer
enactment has resulted from configuration management toolsets which have allowed process
definition to be added and supported as the process itself becomes configuration controlled.

Some examples of customizable environments are EAST (the Environment of
Advanced Software Technology), CaseWare/CM, Summit Process, firstCASE, and
Navigator System Series. In the EAST environment, built on an implementation of PCTE,
management is a priority. The environment supplies a set of management and development
tools, and provides complete configuration management. EAST furnishes standard process
models (IEEE Standard 1002-1987, ESA Software Engineering Standard, DoD-STD-2167A).
Models can be refined and adapted to the tasks of a specific project.

Summit Process incorporates a hypertext front end and provides a fully automated
process for the entire information systems life cycle. Though it is said that Summit Process
can be used to support any process, it is most suitable for use in building information

110

Appendix F: Enactment Technology

systems. Another information systems environment, firstCASE, is based on the vendor's

automated (customizable) systems methodology. Navigator System Series is a third

information systems turnkey environment; in this instance, customers must buy into

Navigator's methodology for building information systems; the only tailoring that is allowed

permits a user to attach guidelines to process blocks. A number of other information-

systems-oriented enactment environments are also available commercially.

CaseWare/CM, targeted mainly to the UNIX market, is advertised as a

configuration management system that "provides complete control over development and

maintenance activities." Support for tool integration, configuration management, and

problem tracking is already built in. The system can be customized to implement, automate,

and enforce unique organizational development processes. The desired software process

must be specified in the system using a fourth generation language (4GL) process modeling

language called ACcent so that the system can provide automated support of the process.

Turnkey systems are available - CaseWare/CM has integrated their toolset with

FrameMaker, SoftBench, Saber-C, Saber-C++, and the Alsys Ada environment; plans to

integrate Process Weaver (see Section F.3) are being made. The CaseWare/CM system can

be used to support the modeling of project/organization-specific process and project-specific

tools. Although the tool was developed by building capabilities onto a basic configuration

management tool, CaseWare/CM has begun to approach a basic process modeling/enactment

capability. A number of customers who have chosen this type of system are basically

satisfied with the resulting environment and feel that such a system provides the level of

computer enactment support that can realistically be achieved commercially at this time.

F.3 Process-Driven Enactment Approaches

When a software process model or process language is used to generate the

environment, the process itself is of primary importance. Some of the products used to

implement this approach are: EUREKA Software Factory (ESF), MARVEL, IPSE2.5,

MELMAC, Virtual Software Factory (VSF), KI-Shell, and Process Weaver. ESF uses

process models as the basis of tool integration; this research effort is investigating a number

of different schemes and modeling formalisms for use in enacting the process. MARVEL

uses process definitions using pre-condition/action/post-condition formalisms. In IPSE2.5, a

particular execution of the process models provides the environment to the users; a process

model execution facility serves as the means of invoking tools and presenting choices to

111

Software Technology Support Center

environment users. MELMAC is an environment based on the execution of high-level Petri

net representations of software process models.

A product called Process Weaver, developed by Cap Gemini in France, allows
modeling, instantiation, guidance, and support for interfacing with CASE tools. This product
uses a combination of hierarchy of activities, descriptions of activities in terms of input
objects, output objects and roles (or types of people) involved in the performance of the

activity, and Petri nets to model a process. For each node of the "activity tree," a
cooperative procedure is defined that represents the ordering of activities and conditions that
trigger the move from one activity to another. Any tool on any supporting platform can be

integrated using the concept of a "software bus," rather than using a common database for all

tools; the bus requires only that tools provide a programmatic interface that can be accessed
via the protocols that the software bus stipulates. After enactment, the user of the system is
presented a screen that lists the set of tasks that can be performed. By clicking on a specific
task, the Workcontext window of that task will be brought up. By clicking on particular
input/output objects, the associated tools are invoked with the appropriate template, file, or

information. Metrics (determined by the builder of the model) can be gathered automatically
as a project proceeds. This product has generated a lot of interest in the process technology
community. At this point, it has only been used to enact small portions of practice areas - for
example, to model/enact the review cycle for software components. Process Weaver seems
to have a lot of promise but needs to be piloted and used operationally before being
unconditionally recommended for full life-cycle enactment.

KI-Shell is an object-oriented, workflow-based product for process modeling and
computer enactment. To define workflow, a workflow activity model (looking very much
like an IDEFO model providing a functional view of activities to be performed) is used. How
each activity is performed is specified by using the C programming language to define
procedures (rules) to be executed during activity performance and by calling utilities from the
system integration library. KI-Shell directs and manages user activities, tools, and data
according to a planned workflow. It can handle complex synchronization and ordering
requirements, and complex information structures. Because KI-Shell uses the object-oriented
approach, changes are localized to impacted objects. The model can be changed quite rapidly
to meet changing user requirements. It has been successfully used to model and enact
concurrent engineering, manufacturing/assembly processes, and financial and medical/health
processes. KI-Shell operates in a client-server mode - a network of workstations with one

112

Appendix F: Enactment Technology

workstation designated as the process server (containing a database such as Oracle to store

process descriptions and process instances) and others performing as machines for users with

specific roles.

A product with an approach that differs from the others described above is the
Virtual Software Factory (VSF), that is really a process-driven CASE tool and CASE tool

environment builder. A language called Cantor, based on set theory and predicate logic, is
used to define a process model. VSF then enables the process engineer to rapidly establish
high-performance, multi-window, menu-driven CASE tool support. They call their approach
a "modeling approach" as contrasted with Process Weaver and KI-S hell's "constructive
approach" (where COTS tools are the components). The environment uses a common
database repository for all tools; because the VSF system actually generates the tools that
will be used in the environment, all information in the database is managed at a detailed
semantic level. This may be an ideal solution for organizations and projects that have their
own design methods or documentation standards to support as it allows the user to establish
support for the precise method required and provides the ability to evolve over time. The
downside is the necessity to build all tools from scratch, even though the vendor asserts that
it is possible to build a basic process-driven environment with all the necessary tools in three
to six months. A number of "complete" VSF solutions (which have resulted from VSF
working with customers in building environments) are now available.

113

Software Technology Support Center

(This page is intentionally left blank)

114

Appendix G: Bibliography

Appendix G - Bibliography

115

Software Technology Support Center

This appendix contains articles, books, and presentations that will provide

information on process technologies discussed in this report In order to help the reader find
relevant materials more easily, the recommended readings are arranged into categories based
on process focus rather than providing all references alphabetically. Within a process

category, readings are grouped alphabetically by author - where authors are not known, by

title.

The first page is a table of contents for the recommended readings. This is followed
by a short list of references recommended to the beginning reader in process technologies for

a good overview of the field. The full annotated bibliography follows this short list.

116

Appendix G: Bibliography

Table of Contents: Recommended Readings

I. Recommended Readings for a Process Technology Overview

II. Annotated Bibliography
G.l Process Assessment

G.2 Process Assets
G.3 Process Modeling - Overview and General Articles

G.4 Process Modeling - Specific Methods and Tools
G.4.1 Entity Process Models/STATEMATE
G.4.2 Grapple
G.4.3 IDEF
G.4.4 IMDE
G.4.5 Petri Nets
G.4.6 Process Languages
G.4.7 RDD100
G.4.8 SPM
G.4.9 SPMS
G.4.10 Structured Analysis Method
G.4.11 System Dynamics
G.4.12 VPML

G.5 Enactment Technology/Process-Driven Environments -
Comparative Assessments and General Articles

G.6 Specific Process-Driven Environments and Enactment Technologies
G.6.1 Distributed System Factory (DSF)
G.6.2 Eureka Software Factory (ESF)
G.6.3 ISTAR
G.6.4 KI-Shell
G.6.5 MARVEL
G.6.6 MELMAC
G.6.7 PREIS
G.6.8 SFINX
G.6.9 TRIAD
G.6.10 Virtual Software Factory (VSF)

G.7 General Process

117

Software Technology Support Center

I. Recommended Readings for a Process Technology Overview

Assessment:

Humphrey, Watts, "Managing the Software Process," Addison-Wesley Publishing Company,
Inc., 1989.

The definitive book on the SEI's software assessment process. The book
describes the SEI software maturity framework, the use of this framework in
process assessment and the steps required to initiate effective software process
change. The five maturity levels are described (chaoticlad-hoc, repeatable, defined,
managed and optimized) as well as the steps required to move from one level to
another.

Bollinger, Terry, B., McGowan, Clement, "A Critical Look at Software Capability
Evaluations," IEEE Software, July, 1991.

This article provides a critical view of the government's Software Capability
Evaluation program, particularly the use of the SEI capability maturity model by
the government to determine whether or not companies are capable for a software
job.

The paper argues instead for a global, top-down approach to process
optimization that features some type of structured, preferably graphical, method
(such as SADT)for recording the details of an organization's existing processes,
asserting that the act of doing this will lead to more effective company-specific
process improvement.

Dawood, Mark, "It's Time For ISO 9000," CrossTalk, March, 1994.
This article provided an overview of the ISO 9000 series standards, what it

takes to become certified, why it's important, who is currently utilizing ISO 9000,
and comparing it to SEI's CMM.

Modeling:

Curtis, Bill, Kellner, M.I., Over, J., "Process Modeling," Communications of the ACM, Vol.
35, No. 9, September, 1992.

Article presents an overview of current state-of-the-art in software process
modeling. It provides a conceptual framework for discussing software process
modeling and carefully defines terms used in the discussion. Topics covered
include: Uses for process models, perspectives that a model may provide
(functional, behavioral, organizational and informational), and reviews of five
representation approaches for process information (process programming,
functional approach, plan-based, Petri nets and quantitative models).

118

Appendix G: Bibliography

Enactment:

Myles, D.T., "Automated Software Process Enactment," Proceedings from The Fifth Annual
Software Technology Conference: Software - the Force Multiplier, April 21,1993.

This paper provides a good introduction to process enactment. It discusses
the typical roles for process enactment and lists the necessary elements of a process
enactment technology. Myles summarizes the lessons learned by the IBM Federal
Systems Company, Houston, Texas; FSC has been actively engaged in automated
software process enactment since early 1990. Myles presents principal enactment
tool requirements that have grown from this experience and briefly describes their
use of the enactment tool, Process Weaver. He emphasizes the need for a
disciplined process development methodology before process enactment is
attempted. He argues for the concept of "piecemeal enactment" of small segments
of the process and stresses the importance of pilot projects to confirm the utility of
process enactment.

119

Software Technology Support Center

II. Full Annotated Bibliography

G.l Process Assessment

Bollinger, Terry, B., McGowan, Clement, "A Critical Look at Software Capability
Evaluations," IEEE Software, July, 1991.

This article provides a critical view of the government's Software Capability
Evaluation program, particularly the use of the SEI capability maturity model by
the government to determine whether or not companies are capable for a software
job. The article emphasizes aspects of process assessment that they feel are
inadequately addressed in the SEI assessments process - aspects such as taking into
account technology issues, confidence in the model used, view of the software
process embodied in the model, statistical reliability, rating systems, etc.

Argues that the assessment program (and the Software Capability Evaluation
(SCE) program used by the government to determine whether or not companies are
capable for a software job) are seriously flawed by their reliance on the SEI's
unproved process-maturity model. Criticizes the lack of importance of technology
issues on an organization's rating, the artificial ordering of the maturity levels, the
model's lack of statistical reliability, its reliance on a small set of yes-no questions,
and the assembly-line view of the software process, which emphasizes maintenance,
not design. The paper also raises the issue of the model's inhibiting effect on
introducing any change - even change that could be beneficial - to a software
process once it has reached an acceptable maturity level.

The paper argues instead for a global, top-down approach to process
optimization that features some type of structured, preferably graphical, method
(such as SADT)for recording the details of an organization's existing processes,
asserting that the act of doing this will lead to more effective company-specific
process improvement. And finally, it argues that the government should use the
proven track records of companies for producing quality software on time and
within budget when letting new contracts rather than depending on the SCE
program to do the screening.

Humphrey, Watts, "Managing the Software Process," Addison-Wesley Publishing Company,
Inc., 1989.

The definitive book on the SEI's software assessment process. The book
describes the SEI software maturity framework, the use of this framework in
process assessment and the steps required to initiate effective software process
change. The five maturity levels are described (chaotic/ad-hoc, repeatable, defined,
managed and optimized)) as well as the steps required to move from one level to
another.

120

Appendix G: Bibliography

Humphrey, Watts, Snyder, T.R., Willis, R.R., "Software Process Improvement at Hughes
Aircraft," IEEE Software, July 1991.

Lessons learned and return on investment (ROI)for Hughes Aircraft in using
the SEI assessment procedure to improve the software process. Includes: SEI
recommendations for improving the software process from the 1987 and 1990
assessments; portions of the Hughes action plan to address recommendations;
summaries of actions taken.

Humphrey, Watts, and Curtis, Bill, "Comments on 'A Critical Look'," IEEE Software, July
1991.

A rebuttal to many of the points made in the Bollinger article in the same issue
of IEEE Software. First, the concerns of the SEI assessment process (to help
software organizations improve their own capabilities) and the SCE (to help
acquisition groups evaluate suppliers) are quite different. Questionnaire scores
alone are not used in SCE evaluations; the SEI instructs SCE auditors not to base
their contract-award recommendations on maturity grades, but rather trains them
to evaluate an organizations' strengths and weaknesses in eight key areas (project
planning, project management, configuration management, quality assurance,
standards and procedures, training, process focus and peer reviews and testing)
using a clearly defined and widely reviewed method using public, generally
recognized criteria. In general, for either assessment or evaluation, the
questionnaire cannot be separated from the process by which it is used.

Secondly, asking more questions is not necessarily better; statistical methods
are rigorously applied by the SEI to examine the reliability of the questions chosen
to identify the key problem areas. (Some additional questions will be added to the
next version of the maturity questionnaire to resolve shortcomings identified in the
current version.) Thirdly, the SEI feels that the use of the maturity levels to
promote an evolutionary improvement approach, supported by the use of maturity
levels, is a sound one. And, lastly, the SEI has concluded that specific technologies
should not be addressed in this framework until there is a broader consensus on the
most effective technologies. The authors comment that the use of technology by
low-maturity organizations will probably have limited success. The SEI urges
organizations to use technology to address only the problems they truly understand.

McGowan, C.L., and Bohner, S.A.," Model Based Process Assessments," Proceedings of
the 15th International Conference on Software Engineering, pp. 202-211, Baltimore,
Maryland, May 17-21,1993.

This paper presents an approach that combines process modeling with
process assessments. It describes the creation of an SADT (IDEFO) model of a
large software maintenance process and its use as a basis for assessing the process.
The model led to process improvements that might have been missed otherwise.
The model based process assessment (MBPA) approach is contrasted to the SEI
Process Assessment approach and recommended as either a replacement for or
adjunct to the SEI approach.

121

Software Technology Support Center

Mosemann, Lloyd K. II, Memorandum "Policy on Software Maturity Assessment Program",
September 1991.

This memorandum outlines the Air Force commitment to improving the
software acquisition, development, and support process of their software intensive
systems. In addition, it states a goal "to achieve a maturity level 3 (defined process)
by 1998 for Central Design Activities I Software Design Activities (CDAISDA) and
weapon systems Software Support Activities (SSA)."

Paulk, M., Curtis, B., Chrissis, M.B. et al., "Capability Maturity Model for Software,"
Technical Report CMU/SEI-91-TR-24, Software Engineering Institute, August 1991.

Using knowledge acquired from software process assessments and extensive
feedback from both industry and government, an improved version of the process
maturity framework has been produced called the Capability Maturity Model for
Software (CMM). This paper is an introduction to the revised model. Specifically,
it describes the process maturity framework, the structural additions that compose
the CMM, how the CMM is used in practice, and future directions of the CMM. It
is hoped that the report will clear up some of the misconceptions associated with
the earlier model and questionnaire, particularly the practice of equating the
vehicle for exploring process maturity issues, the maturity questionnaire (a simple
tool for identifying areas where an organization's software process needed
improvement) with the model itself.

Paulk, M., Curtis, B., Chrissis, M.B. et al., "Capability Maturity Model, Version 1.1," IEEE
Software, Vol. 10, No. 4, July 1993.

This paper presents an overview of the current version of the CMM. It
discusses immaturity versus maturity in an organization, the five maturity levels of
the CMM, and the CMM operational definition (i.e., internal structure; key process
areas; goals - which are used to determine if an organization or project has
effectively implemented a key process area; attributes that indicate whether the
implementation and institutionalization of a key process area is effective,
repeatable, and lasting; and key practices). In addition, it summarizes the
differences between CMM Version 1.0 and Version 1.1; in general, the new version
has more consistent wording and should be easier to use. The revision is based on
more than six years of experience with software-process improvement and the
contributions of hundreds of reviewers. Although the CMM is considered a living
document that will be improved, The SEI anticipates that CMM Version 1.1 will
remain the baseline until at least 1996.

Paulk, M., Humphrey,. W.S., Pandelios, G.J., "Software Process Assessments: Issues and
Lessons Learned," Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA.

The software process assessment method developed by the Software
Engineering Institute at Carnegie Mellon University is being used by a growing
number of US government and industrial software organizations. This paper
describes the key organizational issues found by using this assessment method over
the past four years and relates them to traditional US industrial practices. Some of
the SEI's experiences are described as well as the lessons learned from assessing

122

Appendix G: Bibliography

over 60 organizations and interviewing approximately 2£00 software professionals
and managers.

Weber, C.V., Paulk, M.C., Wise, C.J., Withey, J.V., et al., "Key Practices of the Capability
Maturity Model," Technical Report CMU/SEI-91-TR-25, Software Engineering Institute,
August 1991.

This report describes the key process areas that correspond to each maturity
level in the CMM. Key process areas are building blocks that indicate the areas an
organization should focus on to improve its software process and to identify the
issues that must be addressed in order to achieve a maturity level. What is meant
by maturity at each level is elaborated and a guide that can be used for software
process assessments, software capability evaluations, and process improvements is
provided.

For each level in the maturity model, key process areas are defined (i.e.,
requirements management, software project planning, software project tracking
and oversight, software subcontract management, software quality assurance and
software configuration management for Level 2: Repeatable). Then, for each key
process area identified, goals are established and the key practices needed to
accomplish these goals specified.

123

Software Technology Support Center

G.2 Process Assets

Gates, L., et al., "Process Definition Advisory Group Workshop Summary Report," Software
Engineering Institute Special Report (SEI-91-SR-15), December 1991.

This report is a summary of the October, 1991, Process Definition Advisory
Group (PDAG) workshop. The purpose of the PDAG (members drawn from STARS
prime contractors, affiliates and academia) is to support the STARS software
process definition project. STARSISEI is identifying, collecting and analyzing
existing life-cycle models, process descriptions, procedures, methods and other
related process documentation in order to distinguish process component types,
attributes, instances and priorities so that component templates can be designed
based on these features. The motivation for this task is that making tailorable,
adaptable examples of modern experience-tested software processes readily
available will facilitate their use. The task will culminate with the initial definition
and demonstration of a reuse library for software process, i.e., the Process Asset
Library (PAL). The library or repository will contain reusable, tailorable,
adaptable, experience-tested, modern software engineering processes. Methods
and criteria for composing project-specific processes from components will also be
developed.

This workshop discussed long-term and short-term usage scenarios for the
library, general architectural concepts in the context of software process and the
library, and provided guidance on which process components should initially be
collected and installed in the PAL. Components judged to be most useful included
support tools, process fragments, examples of defined processes and process
notations.

124

Appendix G: Bibliography

G.3 Process Modeling - Overview and General Articles

Carney, Dave, IDA, "Obstacles to Automating the Software Process," AIAA Computing in
Aerospace 8, October, 1991.

"Much, perhaps most, of the technology for automated Process Management
is in its infancy. And the core problem itself, in its scope, tractability, etc., is hardly
known. So my concern is that expectations, at least expectations of rapid
technological developments and rapid dissemination of them, are perhaps too
great."

Clough, A.J., "Choosing an Appropriate Modeling Technology," C/A/S/E Outlook, Vol. 7,
No. 1, pp. 9-14.

Choosing an appropriate process modeling technology is not a
straightforward task. An organization must first determine what questions it wishes
to answer by using the model. This paper provides lists of questions from the model
reader and model developer's perspectives. Choosing the questions that an
organization wishes to answer can help an organization establish priorities for
process modeling technologies, since each has strengths for answering certain
kinds of questions. Once an organization has determined what questions are
important in its development and use of a software process model, a more
systematic and directed technology choice is possible.

Curtis, Bill, Kellner, M.I., Over, J., "Process Modeling," Communications of the ACM, Vol.
35, No. 9, September, 1992.

Article presents an overview of current state-of-the-art in software process
modeling. It provides a conceptual framework for discussing software process
modeling and carefully defines terms used in the discussion. Topics covered
include: Uses for process models, perspectives that a model may provide
(functional, behavioral, organizational and informational), and reviews of five
representation approaches for process information (process programming,
functional approach, plan-based, Petri nets and quantitative models). Specific
approaches reviewed include APPLIA, HFSP, GRAPPLE, Petri net role interaction
model, and system dynamics. Issues in process modeling discussed include:
formality, granularity and precision, prescriptive vs. descriptive vs. proscriptive
models, multi-paradigm representations. It also discusses the use of models in
process improvement and software project management. Process-based software
development environments discussed include Arcadia, ISTAR, and MARVEL.

Curtis, W., Krasner, H., Shen, V., and Iscoe, N., "On Building Software Process Models
Under the Lamppost," ACM, 1987.

A criticism of most process models as representing a manufacturing
orientation that does not really describe how software is developed. The authors'

125

Software Technology Support Center

criticism of process programming points out that procedural descriptions are not
likely to assist software engineers in performing their tasks with greater efficiency
or accuracy, unless their problem was not knowing what to do next. Such
descriptions do not provide managers with greater insight into impending
problems. Further dangers of process programming: Procedures may represent
idealized processes that may not map accurately to actual development behavior.
Secondly, we may automate processes that do not match the way people, and often
outstanding people, work. Premature proceduralization may thus actually interfere
with efficient performance of a complex, or creative, task.

The authors visited 19 projects to study their development processes. It is
their conclusion that, if software process models are to offer more than illusory
comfort, then we must focus them on something other than phase-ending events and
activity descriptions that are useful only when there is little uncertainty. It is this
paper's primary thesis that the focus should be on the activities that account for the
most variation in software productivity and quality. Current process models are
prescriptive. Descriptive process models of the way software is actually developed
are needed.

Curtis, Bill, "Three Problems Overcome with Behavioral Models of the Software
Development Process," Proceedings: 11th International Conference on Software Engineering,
May 1989.

This paper clarifies the distinction between a functional approach and a
behavioral approach to process modeling.

Functional approach: software development processes focus on the software
artifact at given stages in its evolution and the nature of the transformations being
applied to it during these stages; the software process is bounded by those activities
that initiate and terminate the development of a specific software product. Three
problems that this approach can lead to are: 1) the progression of stages through
which the artifact evolves gets confused with the organization of the processes
through which people develop software, 2) project processes that do not directly
transform the artifact are not analyzed for their productivity and quality
implications, and 3) the process is treated as discrete rather than continuous in time
(i.e., each project invokes a separate process).

Behavioral approach: a behavioral analysis of software development and the
factors that control its productivity and quality takes into account cognition and
motivation, group dynamics and organizational behavior. Such an analysis does
not replace traditional models of software product evolution - rather, it supplements
them with a greater understanding of what controls project outcomes. A layered
behavioral model has been proposed to analyze problems experienced in
developing large software systems. The layers that must be present in a
comprehensive process model include: individual (cognition and motivation), team
and project (group dynamics), and company and business milieu (organizational
environment).

Finkelstein, Anthony," 'Not Waving but Drowning': Representation Schemes for Modeling
Software Development," Proceedings: 11th International Conference on Software
Engineering, 1989.

Given the requirements that a modeling representation must be formal,
explicit and enactable and, in addition, support various roles (i.e., environments,
active method guidance, meta-programming and development analysis), it is not

126

Appendix G: Bibliography

surprising that it has proved impossible to find a single representation that is
sufficient. The paper rejects the standard repertoire of schemes and argues that
what is needed is not incremental improvement or minor changes to existing
schemes but a quantum jump in the type of representation scheme to be used. He
suggests a "pluralist" approach in which descriptions in a variety of formalisms can
be used to complement each other and advances some ideas (such as non-standard
logical formalisms) in this vein for further exploration.

Hatley, Derek J., "The Case for Parallel Development," Embedded Systems Programming,
January 1991.

A layered model of the software development process is presented that is
considerably more complex than other (i.e., sequential) development process
models, which are considered by the author to be too simplistic to be useful.

Kellner, M.I., and Hansen, G.A., "Software Process Modeling," Technical Report, Carnegie-
Mellon University/Software Engineering Institute, CMU/SEI-88-TR-9, May 1988.

This technical report pulls together much of the same material as is
represented in shorter papers in this bibliography. It includes: an overview of
software process modeling; a more in-depth overview of the Post Deployment
Software Support (PDSS) area focused on in SEI's modeling efforts; an overview of
modeling approaches considered and a more in-depth overview of software process
modeling with STATEMATE; a summary of results and lessons learned.

Kellner, Marc I., "Representation Formalisms for Software Process Modeling," Proceedings
of the 4th International Software Process Workshop: Representing and Enacting the Software
Process, ACM, 1988.

Kellner uses process model synonymously with process definition. He
provides a good list of requirements for an effective process model (i.e., definition)
and a brief comparison of the capabilities of STATEMATE when compared to the
list of requirements.

Notkin, David, "Applying Software Process Models to the Full LifeCycle is Premature,"
1988.

Notkin focuses on process programming to define software processes. His
thesis: sufficient experience in building many complete instances (look at compiler
and operating system technology as a good example) is necessary before you can
hope to generate instances. And even that is not sufficient if enough formal
notations, useful for the actual parameterization, have not been developed. Add to
this the fact that there are currently no commercially successful full life cycle
environments, how can we expect to construct viable process-driven environments?
We need to continue our efforts to develop full lifecycle environments and focus on
narrow ranges of lifecycle activities with the intention of producing
parameterizable efforts in these areas before attempting to apply software process
models to the full lifecycle.

127

Software Technology Support Center

Rombach, H.D., "A Specification Framework for SW Process: Formal Specification and
Derivation of Information Base Requirements," Proceedings of the 4th International Software
Process Workshop, ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 4, June 1989.

Author asserts that most existing approaches to specifying software
engineering processes are not satisfactory. They are frequently incomplete,
inconsistent and imprecise. Part of the reason for this is that no single language
can satisfy the needs of software engineers as well as the designers of the
information base. This belief led the researches at the University of Maryland to
propose a specification framework idea. The framework consists of three
representation levels: 1) the application level, which allows the user to specify the
relevant aspects of a software engineering scenario in a natural way, 2) the
intermediate level, which allows for a "complete" (i.e., executable) specification of
a software engineering scenario and 3) the information base level, which allows the
specification of a software engineering scenario in terms of objects to be stored and
operations on these objects. A first version of a software process specification
language exists. The author is currently working on first ideas for languages at the
application and information base level.

Tully, Colin, "Software Process Models and Iteration," IEEE, 1987.
This short paper makes some useful distinctions between prescriptive versus

descriptive models, activity-based versus deliverable-based models and iteration in
models vs. backtracking.

Williams, Lloyd G., "A Behavioral Approach to Software Process Modeling," Proceedings
of the 4th International Software Process Workshop, ACM SIGSOFT Software Engineering
Notes, Vol. 14, No. 4, June 1989.

Presents an argument for a behavioral approach to software modeling which
focuses on the effects which the activities produce rather than the specific
procedures (or algorithms) used to produce those effects, i.e., what an activity is
supposed to do rather than how it is to be done. The software process is described
in terms of events which occur in the development effort, rather than the state of the
product. The software process model is described as a set of activities where an
activity is defined to consist of a set of preconditions, an action, a set of
postconditions and a set of messages.

128

Appendix G: Bibliography

G.4 Process Modeling - Specific Methods and Tools

G.4.1 Entity Process Models/STATEMATE

Humphrey, W., and Kellner, M.I., "Software Process Modeling: Principles of Entity Process
Models," Technical Report, Carnegie-Mellon University/Software Engineering Institute,
CMU/SEI-89-TR-2, February 1989.

This paper outlines the principles of entity process models and suggests ways
in which they can help to address some of the problems with more conventional,
functional or task-oriented approaches to modeling software processes. Many
traditional process models are extremely sensitive to task sequence; many are
unrealistic thereby biasing the planning and management system. Entity-based
models deal with real entities (for example, requirements, the finished program,
program documentation design) and the actions performed on them The process of
producing an entity process model entails: I) identifying the process entities and
their states, 2) defining the triggers that cause the transitions between these states,
3) completing the process model without resource constraints, and 4) imposing the
appropriate limitations to produce a final constrained process model.. This process
is illustrated by a detailed example using the STATEMATE toolset. Entity process
models focus on the dynamic behavior of a process, are formal and enactable, and
permit automated tests and analyses.

Kellner, Marc. L, "Software Process Modeling Example," Proceedings of the 5th
International Software Process Workshop: Experience with Software Process Models,
October 1989.

Brief paper conveys the flavor of the SEI approach to software process
modeling through the presentation of an example model fragment.

Kellner, Marc I., "Experience with Enactable Software Process Models," Proceedings of the
5th International Software Process Workshop, October 1989.

This short paper describes using STATEMATE to model the post deployment
software support process used by the US Navy to support the avionics system for F-
14A aircraft and by the Air Force to support the avionics system for the F-16A/B
aircraft. It describes the amount of research that preceded the modeling and points
to a number valuable outcomes that have resulted form the modeling efforts (such
as a substantial increase in understanding of the process and help in highlighting
problems and areas of opportunity for process improvements). Qualitative
examination is described. The models, as they currently exist, are not quantified
and cannot predict things like manpower requirements or schedule.

Kellner, Marc I., Hansen, G.A., "Software Process Modeling: A Case Study," IEEE, 1989.
Describes the use of STATEMATE for software process modeling. Covers:

the major objectives of software process modeling, primary capabilities required of

129

Software Technology Support Center

software process models, requirements for a modeling approach (an excellent and
comprehensive list), and a list of potential modeling approaches. STATEMATE, the
modeling method chosen, supports multiple viewpoints: behavioral (using
Statecharts, an improved variety of state transition diagrams), functional (using
Activity charts, which are enhanced data flow diagrams), and structural (using
Module Charts to represent organizational units or individuals who perform the
activities depicted in the activity chart). The STATEMATE modeling methods were
applied to the task of improving the process used by the Air Force to modify
Technical Orders. General lessons learned from this exercise are included. The
SEI continues to investigate and apply promising approaches from the set of
existing methodologies and toolkits that may be applied to software process
modeling

G.4.2 GRAPPLE

Huff, Karen, "Probing Limits to Automation" Towards Deeper Process Models," Proceedings
of the 4th International Software Process Workshop, ACM SIGSOFT Software Engineering
Notes, Vol. 14, No. 4, June 1989.

The author explains how artificial intelligence technology can be applied to
reasoning about a process with respect to its "purpose", that is, the goal of the
process in the particular context. At the University of Massachusetts, an intelligent
assistant called GRAPPLE, has been designed for supporting the process of
software development, based on an AI planning paradigm, where plan recognition
is used to detect and avert process errors and planning is used to cooperatively
automate the process. A Prolog implementation is now operational, providing a
means for defining a process, including process constraints and default rules; given
such a definition, sequences of actions can be recognized and potential process
errors diagnosed.

G.4.3 TDEF/SADT

Cullinane, T.P., and Mayer, R., "IDEFO & IDEF3: Methods for Implementing a Warehouse
Control System," Proceedings of the EDEF Users' Group Conference, Washington DC,
October 1992.

The purpose of this paper is to demonstrate how IDEFO and IDEF3 can be
utilized to enhance the effectiveness of feedback control in a system. IDEFO has
proven to be an excellent method for developing models of systems that require
control. The significant variables that must be monitored and adjusted to keep a
system within appropriate limits of control become much more obvious when placed
in the context of a function model. IDEF3, excellent for capturing the knowledge
about how a particular process or event should work, then offers a means for
detailing the logic of the operations that must be performed within each functional
area. The IDEF3 method has proven to be extremely useful for describing "how to
bring a system back into control" when it is necessary to make some adjustments in
the way in which the system is being operated.

130

Appendix G: Bibliography

Duran, P., "Why IDEF is Better than Structured Analysis for Process Modeling," Eclectic
Solutions Corporation, May 1992

In the course of trying to sell IDEF concepts, many of us find ourselves facing
organizations that have been using some form of Structured Analysis (SA)
(YowdonlDeMarco, Gane and Sarson, McMenamin and Palmer, Ward andMellor,
HatleylPirbhai..) They want to know how IDEF differs and why they should
consider using anything other than their brand ofSA. They probably also have a
CASE (Computer Aided Software Engineering) tool, even if nobody is using it. This
paper is geared to the IDEF professional who needs some answers to these
questions. Thus some knowledge of IDEF and SA is assumed in the process of
doing the comparison. This is not meant to be a tutorial in either method.

Duran, P., and Irvine, C.A., "Planar Views: Multi-Layer IDEFO Modeling," Eclectic
Solutions Corporation, 1991.

This paper presents an approach that provides a solution to several different
difficulties that occur on IDEFO projects. The approach involves a new use ofFEO
(For Exposition Only) diagrams. This approach solves some of the most serious
problems of complexity of models, provides a means for dealing with multiple
viewpoint models, and addresses several other long-standing modeling issues.

Fritz, M.W., Hoffman, S.L., Cullinane, T.P., "Utilizing IDEFO for Structuring a System
Support Process," Proceedings of the IDEF Users' Group, Albuquerque, NM, May 1992.

The purpose of this paper was to outline how IDEFO is utilized to structure a
system support process (both hardware and software) for a large avionics system
maintenance project. Emphasis is on the positive and negative aspects of getting
started with IDEFO in a project team environment. The unique benefits derived
from the use of IDEFO for planning a future "to-be" system (without the benefit of
having an "as-is" system) was described. The resulting model served to bring the
team together (unified vision, standard vocabulary) and to unify its goals and
understanding. Potential conflicts, duplication of tasks and recognition of activities
that are critical to the system were discovered. For project management: The
model helped in the creation of an effective work breakdown structure; the fact that
it did not reflect the dynamic aspects of the support system could be worked around
when used in conjunction with flow charts and process flow diagrams. For
program management: the model helped users to understand how to structure the
organization to gain the greatest amount of management control while still
maintaining some level of flexibility.

"IDEF3 Process Description Capture Method Overview," Knowledge Based Systems, Inc.,
1992.

One of the primary mechanisms used for communicating information about a
situation is to describe an ordered sequence of events or activities. The IDEF3
Process Description Capture Method was developed to provide a mechanism for
collecting and documenting processes. IDEF3 captures precedence and causality
relations between situation and events in a form that is natural to domain experts.
The goal oflDEFS is to provide a structured method for the expression of domain
expert's knowledge about how a particular system of organization works

131

Software Technology Support Center

Irvine, CA., "IDEFO Model Dynamics, Activation and Simulation," Eclectic Solutions
Corporation, 1989.

IDEFO is a method that contains the appropriate framework for specifying the
active and static constituents of a system and how they operate to carry out the
actions of a system. IDEFO models can describe the dynamic performance of a
system, including real-time characteristics. The fundamental nature of IDEFO
diagrams and models is often misunderstood. The description of specification of
the dynamics of a system that is explicit in IDEFO diagrams and models is seldom
appreciated. This paper will explain the dynamics expressed in an IDEFO model
and show how the dynamics of a system may be examined and studied by automated
simulation of a system as specified in the IDEFO model. Also discussed is how to
include the required information in an IDEFO model and how to analyze it to
answer questions about the dynamic behavior of the that it models. Simulation
based on automated execution of IDEFO models is also described.

Marca, D.A. and McGowan, C.L.,"SADT: Structured Analysis and Design Technique,"
McGraw-Hill, NY, 1988.

The definitive book on SADT/IDEFO modeling methods. The book presents
the general system concepts inherent in SADT, explains how SADT is commonly
practiced, describes how the SADT modeling process is managed, discusses current
automated support for SADT and presents real-life examples.

Mayer, R.J., Cullinane, T.P., deWitte, P.S., et al., "Information Integration for Concurrent
Engineering (IICE) IDEF3 Process Description Capture Method Report," AL-TR-1992-0057,
Knowledge Based Systems, Incorporated, May 1992.

This document provides a method overview, practice and use description, and
language reference for the IDEF3 Process Description Capture Methods developed
under the Information Integration for Concurrent Engineering (IICE) project,
funded by Armstrong Laboratory, Wright-Patterson Air Force Base, Ohio. IDEF3,
as defined in this report, is being proposed as a standard to the IDEF Users
Group.

Mayer, R.J., Painter, M.K., deWitte, P.S., "IDEF Family of Methods for Concurrent
Engineering and Business Re-engineering Applications," Knowledge Based Systems, Inc.,
1992.

This report presents the concept of an IDEF family of methods, which, taken
together, provide a comprehensive modeling capability. The discussion centers on
experiences in the use of the IDEF methods to perform modeling activities in
support of CIM and CE system development. Experience with three such methods is
described in detail, namely, IDEFO Function Modeling, IDEF1 Information
Modeling, and IDEFIX Data Modeling. Following this discussion, the emerging
IDEF methods, including IDEF3 Process Description Capture, IDEF4 Object-
oriented Design, IDEF5 Ontology Description and IDEF6 Design Rationale
Capture are introduced and their envisioned application potential for CIM
implementation described.

132

Appendix G: Bibliography

Mayer, R.J., Cullinane, T.P., et al., "IDEF3: A Process Flow Description Capture Method,"
Progress in Material Handling Research, 1992, ISBN 1-88-27-89-00-0, Milwaukee, May
1992.

IDEF3 is a method for capturing process descriptions and object state
transitions corresponding to process executions. IDEF3 differs from traditional
process flow modeling techniques in that it is focused on facilitation of the capture
and organization of facts rather than the formulation of idealized models. IDEF3
descriptions differ from unrestricted text and ad hoc diagrammatic descriptions
because the language is based on a formal mathematical semantics. Thus, an
IDEF3 description base can be used as the basis for the design of many different
types of models ranging from cost and schedule models to simulation models. This
paper presents a succinct overview of the method and describes the potential
applications for this technology in the development of material handling systems.

Mogilensky, Judah and Stipe, Dennis, "Applying Reusability to Software Process
Definition", Tri-Ada Conference Proceedings, 1989.

This paper introduces the notions of applying reusable process step
components to the definition of the software development process thereby allowing
the construction of custom project life cycles from reusable process step
components. Process steps are selected and retrieved from a library during the life
cycle design activity. Each process step accepts as an input a relatively abstract
model of the system under development, and produces as an output a new model of
the system that is relatively less abstract. The notation and modeling approach is
IDEF, The Integrated DEFinition Method. Project life cycle design should
eventually have an automated tool that assists the software engineer in defining the
key characteristics of a given project and applying rules to the activities of process
step selection and life cycle design. The paper also relates this method of process
definition to process maturity improvement efforts using SEI assessment levels.

G.4.4 IMDE

Clark, P., Honious, J., Renken, K., (TASC: Fairborn, Ohio), "The Integrated Model
Development Environment," a paper presented at Elector '92, Boston, MA.

Paper describes the Integrated Model Development Environment (IMDE), an
object-oriented environment that provides graphical description and construction of
models, maintains configuration control of models (including input and output files
and their constituent parts), analyzes simulation results and allows documentation
to be integrated with the models. It is argued that, by allowing more time to be
spent in designing models (rather than in tracking down syntax errors, maintaining
configuration control and sifting through mountains of raw data), the IMDE will
allow for a significant reduction in the complexity involved in building discrete
event simulations. In addition, IMDE allows the analyst (as opposed to the
programmer) to get much closer to the actual model implementation which uses
PetriNets.

133

Software Technology Support Center

G.4.5 Petri Nets

Jensen, K., "Coloured Petri Nets: A High Level Language for System Design and Analysis,"
Advances in Petri nets 1990, Lecture Notes in Computer Science, vol. 483, Spring, Berlin
Heidelberg New York 1990, pp. 342-416.

The paper describes Coloured Petri Nets and support for modeling and
analysis by tools such as Design CPN.

Jensen, K., and Rozenberg, G., "High-level Petri Nets," Springer-Verlag, 1991.
This book contains reprints of some of the most important papers on the

application and theory of high-level Petri nets. High-level Petri nets make it
possible to obtain much more succinct and manageable descriptions than can be
obtained by means of low-level nets ,while, they still offer a wide range of analysis
methods and tools. High-level Petri nets are now widely used in both theoretical
analysis and practical modeling of concurrent systems and have been used,
particularly in Europe, to define and model the software process.

Kramer, Bernd and Luqi, "Petri Net-Based Models of Software Engineering Processes,"
Proceedings of the Twenty-Third Annual Hawaii International Conference on System
Sciences, Jan. 1990.

Presents a Petri net-based process model (PNP model). Claims the formalism
provided by a Petri net model contributes to consistent and precise understanding
of software process, enables automated support to enhance the reliability and
reusability of process models and opens ways to automate well-understood parts of
software processes. This is a behavior-oriented software process model which is
effective in modeling dynamic and distributed software process activities.

G.4.6 Process Languages

"Domain Specific Environment Repository Process Programming Language
Experimentation," Informal Technical Report for the Software Technology for Adaptable,
Reliable Systems (STARS), Publication No. GR-7670-1254(NP), 15 November 1991.

This report presents the results of a process modeling and programming
experimentation task carried out by TRW, Fairfax, VA, under a subcontract to
Unisys Defense Systems, Reston, VA, as part of the STARS program. The
experiment was conducted over a six-month period, February through July, 1991,
and studied two process programming languages, MVP-L and APPLIA (which
represent the current state of the art), and their prototype tools. The study found
process programming to be difficult and time consuming. It was felt that process

134

Appendix G: Bibliography

experts were vital for any success in this area. In general, process programming
was deemed an immature area.

Lehman, M.M., "Some Reservations on Software Process Programming," Proceedings of the
4th International Software Process Workshop, ACM SIGSOFT Software Engineering Notes,
Vol. 14, No. 4, June 1989.

Paper expresses the author's strong reservations about process programs and
the role they can or should play in software development. He questions whether
they will provide more insight into the software development process, produce
better understanding of that process, or lead to its significant improvement. He
fears the popularization of the concept of process programming. Process
programming cannot adequately capture the heavily context dependent software
development process in which process structure and composition cannot be
predicted. A program based model may actually limit the scope and power of what
can be achieved in the software development process. The author feels that such
descriptions will ultimately only have usefulness if used in a limited way to guide
IPSE and tool architecture and to help control IPSE usage.

Osterweil, Leon, "Software Processes are Software Too", Proceedings - 9th International
Conference on Software Engineering, March 1987.

This paper advocates the use of "process programming" to define software
development processes. Provides examples of process programming, outlines its
advantages in describing process, points to the need for process programming
language studies and relates it to software environment architecture research (in
particular, Arcadia).

Osterweil, Leon, UC, Irvine, (Arcadia Project) "Process Centered Software Environment as
Interpreters of Software Process, Programs, AIAA Computing in Aerospace 8, October,
1991.

"Software processes can be specified quite precisely using programming-like
approaches, and can thereby be used to indicate just how software tools are to be
applied by computing devices and humans. Work carried out as part of the Arcadia
project has enabled us to specify such software objects as requirements
specifications, designs and test plans using programming language like constructs
and to create process programs for building these objects."

Ramanathan, J., and Sarkar, S., "Providing Customized Assistance for Software Lifecycle
Approaches," IEEE, 1988.

This paper describes a tightly coupled environment architecture that uses
underlying representations of the software development process, the objects and
relationships being manipulated, the functionalities of the tools, and the roles of the
various project members to provide automated support for enforcing the discipline
required to ensure the success of large multi-person projects. The paper focuses on
features of a Conceptual Modeling Language (CML) for specifying such
representations. A prototype implementation has been constructed as part of the
TRIAD project at Ohio State University.

135

Software Technology Support Center

Roberts, Clive, "Describing and Acting Process Models with PML," Proceedings of the 4th
International Software Process Workshop, ACM SIGSOFT Software Engineering Notes,
Vol. 14, No. 4, June 1989.

The language Process Modeling Language (PML) combines features from
both specification and programming and permits the integration of not only tool
and data, but also the activities constituting the process itself. Using a
role/interaction paradigm, it allows the description of behavior which is both
generic and dynamic - classes can be refined and changed on-the-fly, minimum
restrictions on sequence and concurrency are necessary. Classes are the main
objects of the language and primitive object groups and their behavior are built
into the language. A prototype simulator implemented in Smalltalk 80 and based on
the Smalltalk environment has been developed to allow enaction of the PML
process model. A mature PML machine would act as a fully extensible IPSE,
tailored to the process required of the users.

Scacchi, Walt, "Modeling Software Evolution: A Knowledge-Based Approach," Proceedings
of the 4th International Software Process Workshop, ACM SIGSOFT Software Engineering
Notes, Vol. 14, No. 4, June 1989.

This paper argues that the complexity of objects, attributes, relations,
constraints, procedural and non-procedural control structures, and process actions
that must be described by a process language will be better realized by using a
knowledge representation language, rather than a programming language, to
define the software process. At the University of Southern California (as part of the
USC System Factory Project), Gist is being used as an operational knowledge
specification language, supplemented by the use of tools such as specification
generators, language-directed editors, specification analyzers, functional
simulators and a software hypertext system to construct, formalize and manage the
knowledge descriptions. A commercial expert system development environment,
Knowledge Craft from Carnegie Group, Inc., has extended the processing
capabilities to accommodate inferential reasoning mechanisms and abstractions.

Shepard, T., Sibbard, S., Wortley, C, "A Visual Software Process Language,"
Communications of the ACM, Volume 35, Number 4, April 1992.

Describes VPL (Visual Programming Language), a formal programming
language designed to visually represent and permit enaction of software
development processes. A VPL model of a software process is a directed graph of
nodes and edges and combines some of the features of the object-oriented
paradigm, Petri nets, and logic flowcharts. An object in a VPL program represents
all the artifacts associated with a currently active individual work assignment.
Non-linear control is available via activation and deactivation mechanisms and the
archiving of earlier versions of an object. In this paper, language symbols are
explained, examples of language application are provided and the use of VPL to
describe the maintenance of aircraft software for the Aurora Software Development
Unit (ASDU) in Canada discussed. The language appears to be useful in describing
a software process. However, tool support is minimal. Authors are from the
Department of Computer Engineering at the Royal Military College of Canada.

136

Appendix G: Bibliography

Their work was supported in part by the Canadian Department of National Defense
(DND).

Taylor, Richard, "Concurrency and Software Process Models," IEEE, 1987.
Emphasizes that concurrency must be a fundamental descriptive (or

structuring) mechanism in a process definition "language." Any language without
support for concurrency should be judged inadequate.

G.4.7 RPPIOO

Alford, Mack, "Strengthening the Systems Engineering Process," paper presented at NCOSE,
October, 1991.

This paper describes an executable "behavior diagram" notation (which can
be directly executed by RDD-100) for describing system functionality which
eliminates the deficiencies of existing system analysis notations. Contains a good
critique of the shortcomings of many of the conventional modeling techniques.

"Requirements Driven Development: An Overview," Ascent Logic Corporation, San Jose,
CA, December, 1989.

This paper presents the Requirements Driven Development (RDD) method,
language, and tool suite. It discusses the factors in inter-group comprehension,
compares RDD to other high level definition languages, and argues for the need for
systems design automation.

G.4.8 SPM

Lai, Robert, "Process Definition and Process Modeling Methods," Software Productivity
Consortium, SPC-91084-N, 1991.

Process description characteristics are presented as a prelude to the major
purpose of the report, a presentation of the SPC's approach to software process
modeling.

Presents the SPC's approach to software process modeling based on a generic
process model, a two-level state model that models artifact states (A-states) and
process states (P-states). The two-level model allows the separation of the process
description from the representation used for the artifacts.

Pre-conditions and post-conditions applied to activities enable this method to
model a process description with more freedom than a procedural method in which
the process description must be followed exactly step-by-step. The SPC
opportunistic process allows more freedom being constrained only by the
requirement that, before beginning an activity, the necessary preconditions exist.

The process modeling process described is essentially a form-filling process.
Each form is a template that asks for some data to be provided to describe the
artifacts connected with the process (mostly documents), the relationship between

137

Software Technology Support Center

artifacts, process states, operations that can be performed in a process state,
analyses which can take place within a process state, role definitions, action
definitions. For convenience in representing relationships between roles, activities,
artifacts, A-states and P-states, a graphical notation has been developed to
supplement the forms. Steps that may be followed in applying this method are
included. Various scenarios are described (bottom-up, top-down, inside-out, etc.)

It is stated that the two-level model of a software process can be viewed both
as a specification for the process and as a specification for a process-centered
software environment to be used to support the process. However, other than
suggestions for implementation, no available automatic support is mentioned.

G.4.9 SPMS

Krasner, Herb, Terrel, J., Linehan, A., Arnold, P. and Ett, W.H., " Lessons Learned from a
Software Process Modeling System," Communications of the ACM, Vol. 35, No. 9,
September, 1992.

Describes the use of the Software Process Management System (SPMS) for
process model development. SPMS development was funded as a breakthrough
initiative by DARPAl STARS in 1990. The SPMS includes capabilities for process
model definition, validation, automated generation of project-specific plans with
tailorable execution constraints, continuous process evaluation and model-driven
enaction in the STARS Software Engineering Environment (SEE). The process
model is constructed using model components available in the SPMS process
database. SPMS introduced the notion of integrating a quantitative software
quality model with the process model at both the generic and project-specific levels.
SPMS is designed to handle dynamic process replanning resulting from redirection,
rework and contingency analysis.

SEI has been alpha testing SPMS as a definition tool that can be used to
create assets for the Process Asset Library (PAL). SPMS is still in the R&D phase.
Results: SPMS was found to handle behavioral, functional and organizational
process information well. Additional facilities are needed to better support the
information modeling perspective.

The first functional prototype was available in June 1991. A fully functional
SPMS will eventually be embedded in a process-centered STARS SEE for
supporting active models of the software process in the abstract and in action on
demonstration projects in the 1993 to 1996 time period.

G.4.10 Structured Analysis Methods

DeMarco, T., "Structured Analysis and System Specification," Yourdon Press, New York,
1978.

This landmark book describes the structured analysis approach, which like
SADT/IDEFO, uses a graphical language to build models of systems. There are
four basic features in structured analysis: dataflow diagrams, data dictionaries,
procedure logic representations and data store structuring techniques. SA data
flow diagrams are similar to SADT/IDEFO diagrams, but they do not indicate
mechanism and control, and an additional notation is used to show data stores.

138

Appendix G: Bibliography

Hatley, DJ., and Pirbhai, I.A., "Strategies for Real-Time System Specification, Dorset
House, 1987.

An important book presenting extensions to structured analysis that make it
more appropriate for the analysis of real-time systems

Ward, P.T., and Mellor S.J., "Structured Development for Real-Time Systems," Yourdon
Press, Englewood Cliffs, New Jersey, 1985.

This book describes the real-time structured analysis approach that adds a
state-oriented notation to structured analysis dataflow models, which allows
behavior to be represented.

G.4.11 System Dynamics

Abdel-Hamid, T., and Madnick, S.E., "Software Project Dynamics: An Integrated
Approach." Prentice Hall, 1991.

This book describes the use of the system dynamics modeling approach to
develop an integrative model of software development project management -
developed on the basis of an extensive review of the literature supplemented by
focused field interviews of software project managers in five organizations. The
model divides the software development and management activities into four areas:
(1) human resource management, (2) software production, (3) controlling, and (4)
planning. Two key features of this model that distinguish it from most others are
that it is integrative and it is a system dynamics model. It is integrative in the sense
that it integrates the multiple functions of the software development process,
including the management-type functions (e.g., planning, controlling, and staffing)
as well as the production-type functions that constitute the software development
life cycle (e.g., designing, coding, reviewing and testing). Benefits: overall
understanding is increased, problem diagnosis and solution evaluation are
increased by being able to model interactions and inter dependencies, the chain of
effects from intervention to first, second and third-order consequences can be
traced.

System dynamics is the application of feedback control systems principles and
techniques to managerial, organizational, and socioeconomic systems. As applied
to software process, this approach allows modeling of system structure and uses
computer simulation to enhance understanding of system behavior. Benefits:
greater fidelity in modeling processes, making possible both more complex models
and models of more complex systems, and providing a vehicle for controlled
experimentation in the area of software development.

"System Dynamics Modeling," American Programmer, Vol. 6, No. 5, May, 1993.
The May, 1993, issue of the American Programmer focuses on the use of

system dynamics to model software development and project management systems.
Articles include Abdel Hamid's recommendation to software managers to begin to
"think in circles," a description of a software process model developed at Draper

139

Software Technology Support Center

Laboratory that can be used as a "flight simulator" for software managers, using
system dynamics to enhance executive dialog and debate, modeling the rework
cycles of defense and commercial software development projects, and modeling the
impact of quality initiatives over the software product life cycle.

G.4.12 VPML

VPML: A Commonsense Approach to Enterprise and Process Modeling for the Domain-
Specific Software Process Automation Technology Program, Technical Report, Appendix A,
ISSI-A92A00002,27 July, 1992.

A set of representation schemes and techniques are presented for defining all
facets of the software process. This paper considers three modeling problems -
process modeling, infrastructure modeling, and information modeling - as three
related aspects of the larger problem of enterprise modeling. The report presents
modeling techniques aimed at all three areas and collectively referred to as the
Visual Process Modeling Language (VPML). VPML will become a part of the
Enhanced Software Life Cycle Support Environment (E-SLCSE) project (now
renamed ProSLCSE), the goal of which is to produce a process-centered software
engineering environment that includes editors and enactment tools utilizing these
methods.

140

Appendix G: Bibliography

G.5 Enactment Technology/ Process-Driven Environments -
Comparative Assessments and General Articles

Curtis, Bill, Kellner, M.I., Over, J., "Process Modeling," Communications of the ACM, Vol.
35, No. 9, September, 1992.

Article presents an overview of current state-of-the-art in software process
modeling. It provides a conceptual framework for discussing software process
modeling and carefully defines terms used in the discussion. Topics covered
include: Uses for process models, perspectives that a model may provide
(functional, behavioral, organizational and informational), and reviews of five
representation approaches for process information (process programming,
functional approach, plan-based, Petri nets and quantitative models). Specific
approaches reviewed include APPL/A, HFSP, GRAPPLE, Petri net role interaction
model, and system dynamics. Issues in process modeling discussed include:
formality, granularity and precision, prescriptive vs. descriptive vs. proscriptive
models, multi-paradigm representations. It also discusses the use of models in
process improvement and software project management. Process-based software
development environments discussed include Arcadia, IST AR, and MARVEL.

Drake, Richard, IBM, "Process Support Requirements - A View from the Top", AIAA
Computing in Aerospace 8, October, 1991.

"It is dangerous to automate something before you have experience doing it
manually."

"Environment Frameworks: Assessments," a report (N69-86-C-0415) prepared for the Naval
Air Development Center (NADC) by Software Productivity Solutions, Inc., Melbourne,
Florida, May 9,1989.

This report assesses several commercially available environment frameworks.
The focus is primarily on framework aspects that contribute to environment tool
integration. Atherton Software Backplane and SLCSE are among the environments
evaluated.

Hevner, A., Becker, S., Pedowitz, L., "Integrated CASE for Cleanroom Development," IEEE
Software, March 1992.

This paper addresses the difficulty in CASE environments when you are
unable to integrate the results of one phase and its tools transparently into another
phase and its tools because the phases' underlying concepts and representations
differ. What is needed is a seamless methodology and representation that supports
the entire development process. Using- the concepts of one of the most successful
formal methods, IBM's Cleanroom approach to systems engineering, a model is
proposed in which stimuli and responses are basic information units - state
information, procedural behavior and a usage hierarchy are added to complete the

141

Software Technology Support Center

definition of a process component. Though cleanroom techniques may offer
advantages, much research and development is needed before an integrated
Cleanroom environment can become a reality.

Huseth, Steve, Honeywell, "Obstacles to Automating Software Process Support," AIAA
Computing in Aerospace 8, October, 1991.

Outlines the major technical, economic, and organizational obstacles that
must be overcome to achieve software process support in practical software
engineering environments.

Karrer, A.S., Scacchi, W., "Meta-Environments for Software Production," Journal of
Software Engineering and Knowledge Engineering, December, 1992.

The term meta-environment is used to include generic environments,
environment generators and other approaches to environment construction. This
paper provides a good overview of the current approaches to environment
construction by focusing on the five general topics: environment frameworks,
customizable environments, process modeling, process programming and tool
integration. A very extensive list of researchers!developers is included with
descriptions of their products.

Lonchamp, J., Benali, K., Derniame, J.C., and Godart, C, "Towards Assisted Software
Engineering Environments", Information and Software Technology, vol. 33, no. 8, October,
1991.

The paper characterizes Assisted Software Engineering Environments (ASEE)
historically and by functionalities.

Lonchamp, J., Benali, K., Godart, C, Derniame, J.C., "Modeling and Enacting Software
Processes: an Analysis," Proceedings: Fourteenth Annual International Computer Software
and Applications Conference, IEEE Computer Society Press, 1990.

This paper establishes a list of requirements for designers, managers and
developers in a model-driven environment. Strengths and weaknesses of three third
generation IPSEs (TRIADICML, MARVEL andlPSE 25) are highlighted in terms
of the list of requirements.

Mi, Peiwei and Scacchi, Walt, "Process Integration in CASE Environments," IEEE Software,
March, 1992.

Paper distinguishes between environments that use a tool-invocation chain to
support the use of tools from those that use a resource-transformation chain which
progresses from initial artifacts to intermediate ones and then to the final product
(where artifacts produced early in the life cycle are used later to create other
artifacts). The paper proposes process integration to make the task execution chain
explicit, flexible and reusable and which will provide mechanisms to guide,
manage, monitor and control the progress of development. A software process
model specifies an activity hierarchy and resource requirements. A process driver

142

Appendix G: Bibliography

interprets and executes this model according to its activity hierarchy. After
enactment and during software development, for each task or action in a software
process model, a status (ready, active stopped, broken, done, etc.) is attached.
Using the Softman environment, which was developed as part of the University of
Southern California's System Factory project, the authors implemented process-
driven CASE environments using existing CASE environments. The resulting
environment provided interfaces for both developers and managers.

Myles, D.T., "Automated Software Process Enactment," Proceedings from The Fifth Annual
Software Technology Conference: Software - the Force Multiplier, April 21,1993.

This paper provides a good introduction to process enactment. It discusses
the typical roles for process enactment and lists the necessary elements of a process
enactment technology. Myles summarizes the lessons learned by the IBM Federal
Systems Company, Houston, Texas; FSC has been actively engaged in automated
software process enactment since early 1990. Myles presents principal enactment
tool requirements that have grown from this experience and briefly describes their
use of the enactment tool, Process Weaver. He emphasizes the need for a
disciplined process development methodology before process enactment is
attempted. He argues for the concept of "piecemeal enactment" of small segments
of the process and stresses the importance of pilot projects to confirm the utility of
process enactment.

Osterweil, Leon, "Automated Support for the Enactment of Rigorously Described Software
Processes," Proceedings of the 4th International Software Process Workshop, ACM
SIGSOFT Software Engineering Notes, Vol. 14, No. 4, June 1989.

Osterweil's summary of the state of the art indicates how far we have to come
before effective enactment facilities will be available. Process description
languages, although many in number and approach, in general are not yet
addressing what the author believes is the most central and difficult requirement in
a process coding language - namely the extraordinary degree of dynamism that is
required. Few if any existing languages support the dynamic changes necessary in
the software development process. Secondly, environment architectures are often
closely aligned with work on specific process coding languages. Here too, most
researchers do not yet seem to be adequately addressing the need for dynamism -
namely the need to support alteration of the process itself, perhaps even while the
process is being enacted. Thirdly, the need to establish, analyze and maintain an
enormous and bewildering welter of relations among environment object stores is
such that we should not expect that database researchers will provide us with the
solution to object storage and management problems in the near future. Lastly,
user interface issues and the lack of adequate testing and evaluation for various
description approaches and process enaction mechanisms gives us little reason to
be optimistic that we can develop effective, reliable process enactment software any
time soon.

"A Reference Model for Frameworks of Computer Assisted Software Engineering
Environments," NIST draft version 1.3, prepared by the NISTISEE Working Group, July,
1991.

The functional description of a set of services needed to describe software
engineering environment frameworks. Process Management Services (Section 4)
provides a functional description of process definition, process enactment, process

143

Software Technology Support Center

visibility and scoping, process state, process control and process resource
management services that need to be supplied by a process-driven SEE.

"Representing and Enacting the Software Process," Proceedings of the 4th International
Software Process Workshop, ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 4,
June 1989.

The purpose of this workshop was to focus attention on languages and
notations in which formal models of software processes could be represented and
"enacted." Proceedings include outline reports of the conference discussions (on
topics including enaction formalisms, constructing enactable models, enacting the
models and emerging issues) and position papers submitted by all attendees.
Papers represent a wide variety of approaches and little consensus on a standard
approach for either definition language, enactment mechanisms or environment
support.

"Software Engineering Environment Capability and Viability Review," JIAWG SWEAT
Team Report, 1989.

Report reviews Atherton Backplane, SLCSE and NASA SSE by answering a
number of directed questions covering SEE characteristics, functional capabilities
and programmatic issues.

Täte, G., Verner, J., and Jeffery, R., "CASE: A Testbed for Modeling, Measurement and
Management," Communications of the ACM, Volume 35, Number 4, April 1992.

The important developments in CASE, software maturity and improvement,
software metrics, and software process modeling and enaction, are brought
together in this article and their relationships explored. Authors contrast their
software process modeling goals (measurement and management) with process
programming and state transition process modeling. The paper advocates a data
flow diagram approach both for automating the measurement process and for
producing notation that is easy to understand for software managers and
developers. Enaction consists of a developer selection of one component and one
type of operation; the single-purpose session is important as a measurement unit.
The paper proposes that the CASE development environment be surrounded by a
metrics envelope which in turn is "surrounded" by the software process model. The
developer does not interact with the CASE tool set; but rather "enacts" a suitable
process model as described above.

Weiderman, N.H., Habermann, A.N., Borger, M.W., and Klein, M.H., "A Methodology for
Evaluating Environments," ACM SIGPLAN Notices, Jan. 1987.

This paper provides the requirements for an effective environment evaluation
methodology, the individual steps of the methodology, and an example of how the
methodology has been applied in practice.

144

Appendix G: Bibliography

G.6 Specific Process-Driven Environments and Enactment
Technologies

G.6.1 Distrimited System Factory (DSF)

Scacchi, Walt, "The Software Infrastructure for a Distributed System Factory," Software
Engineering Journal, September, 1991.

Based on experience in creating and evolving the System Factory project at
USC, a new experimental project, called the Distributed System Factory (DSF)
project is being developed to provide a software infrastructure suitable for
engineering large-scale software systems with dispersed teams working over wide-
area networks. This software infrastructure is the central focus of this paper. The
paper describes the information structures that can be used to model and create the
infrastructure, software services that populate and execute within this
infrastructure, and capabilities for growth. Some discussion of software
engineering processes andDSF's software-process modeling framework.

G.6.1 E£F

Fernstrom, G, Narfelt, K., and Ohlsson, L, "Software Factory Principles, Architecture, and
Experiments," IEEE Software, March 1992.

This paper, written by participants in the Eureka Software Factory project,
distinguishes between two types of CASE vendors: component vendors, the makers
of the factory "equipment," and factory vendors, the builders of environments, who
select the most suitable equipment, integrate it, and customize it to fit a client's
organization and production process. The paper points out that the requirements
for process integration are higher for environments than for services. In the ESF
project, process designers create and maintain process descriptions using a
graphical notation that is like SADT, with detailed task descriptions and task
synchronization described using colored Petri nets. To enact a process, the process
designer attaches actions, expressed in an action language, to the Petri net
transitions. Process enactment is provided by a factory process engine, which
implements the runtime support for process programs with a set of service
components present in every factory environment. A software bus provides a
common understanding of the data exchanged among components, independent of
their actual representation. A communication mechanism provides remote
procedure calls and notification-based component interoperation.

145

Software Technology Support Center

G.6.3 IS1ÄE

Dowson, Mark, "ISTAR - An Integrated Project Support Environment," ACM SIGPLAN
Notices, January 1987.

This paper describes ISTAR, an integrated, language independent,
commercially available project support environment developed by Imperial
Software Technology in London, England, which was an early commercial example
of a process-driven environment. It included a comprehensive and extensible set of
tools covering every aspect of the software and system development process. ISTAR
was organized to support software process definition using a contractual approach
to software and system development based on the recognition that every activity in
the software process has the character of a contract between a contractor and a
client. However, ISTAR did not enforce the sequence of activities in a process
definition but simply provides support for them if required.

Graham, M.H., Miller, D. H., "ISTAR Evaluation," Technical Report CMU/SEI-88-TR-3,
Software Engineering Institute, July 1988.

ISTAR's process definition is based on a "contract model" whose primary
objective is that every individual in the organization know what is expected of him
or her. To accomplish this, the relationships among the individuals of the
organization are modeled as contracts. Each contract has a specification of the
work to be performed under it, a person to whom it has been assigned, and a person
for whom the work is being done. The collection of all contracts (forming a tree)
constitutes the process definition. ISTAR makes no attempt to enforce any rules or
standards on the dataflows into and out of a contract. Contract databases serve as
repositories of controlled project knowledge.

Strengths: the project and configuration management tools. Criticisms:
Work area versions and database versions of software units are permitted; it is
relatively easy for these versions to diverge inadvertently. The ISTAR model works
best when a development project is well planned in advance and the resulting plan
is executed without modification. However, the contract model does not always
accommodate changes (particularly changes in the structure of the project) very
well.

The bulk of the report deals with the tool sets supplied with ISTAR. Overall,
ISTAR can be judged an emerging product, not a completed one. Use of ISTAR by
customers tends to be experimental.

G.6.4 KI-Shell

KI Methodology for Workflow Knowledge Acquisition, Technical Report, No. 11, Update 2,
copyright UES, Inc., August 1992.

Description of the KI Shell workflow modeling methodology which can be
easily mapped to workflow enaction. The notation used to describe activities,
information objects, applications, workers, and their inter-relationships are
presented followed by a discussion of how models using these views are mapped to
the workflow enaction.

146

Appendix G: Bibliography

G.6.5 MARVEL

Kaiser, Gail E., "Rule-Based Modeling of the Software Development Process, Proceedings of
the 4th International Software Process Workshop, ACM SIGSOFT Software Engineering
Notes, Vol. 14, No. 4, June 1989.

Describes MARVEL, a model-driven environment, which uses rules both as a
formalism for modeling the software process and a mechanism for automating the
menial aspects of this process. A MARVEL rule consists of three parts, a
precondition that must be true before a particular software activity can be executed,
an activity, and a set of postconditions, exactly one of which becomes true after the
activity terminates. MARVEL provides a form of controlled automation that the
developers call opportunistic processing because MARVEL invokes tools as the
opportunity arises. Controlled automation is accomplished by forward chaining
and backward chaining on the rules, automatically invoking tools as soon as their
preconditions are satisfied and as soon as one of the postconditions is required (i.e.,
as in the case where a user explicitly invokes an activity through a command.)

G.6.6 MELMAC

[Deiters, W., and Gruhn, V., "Managing Software Processes in the Environment MELMAC,"
ACM, 1990.

One key problem in the design of software process modeling languages is the
variety of purposes that a model is used for (i.e., guidance, understanding, coping
with changes). This variety does not lead to one software process modeling
language which is well-suited for fulfilling all purposes. Some implementation
approaches have tried to deal with this problem by distinguishing between an
application level (oriented towards the need of the software process modeler), an
intermediate level (which will permit the representation to be executable) and an
information base level (mainly concerned with questions about object storing and
retrieving).

This paper describes the approach taken in the environment MELMAC. They
have adopted a view-based approach to model the software process (which includes
an object type and activity view, process view, project management view, feedback
view, distribution view and simulation view). Representation of each view is
tailored towards the specific information of that view (i.e., pre-
condition! activity Ipost-condition for the object type and activity view, Petri nets for
the process view, specification of allowable modification points for changing
process models on the fly in the feedback view, etc.) Then, all the information
specified in the views on the application level is presented on the intermediate level
in a uniform way to fulfill the purposes of execution and analysis of software
process models - in MELMAC, FUNSOFT nets, described in some detail in this
paper, are used.

Deiters, W., Gruhn, V., "Software Process Model Analysis Based on FUNSOFT Nets,"
Systems Analysis - Modeling - Simulation, vol. 8, West Germany, 1991.

147

Software Technology Support Center

This paper describes a high level Petri net type that has been adapted to the
requirements of software process management. The paper emphasizes in particular
software process model analysis by showing how these nets can be used to validate
software process models and to verify software process model properties. The work
was partially funded as part of the ESPRIT progräm. The MELMAC environment
provides automated tool support for FUNSOFT modeling, instantiation and
execution as well as support for the incremental management of process models.

G.6.7 EEEIS

Kimball, John and Thelen, Karen, Honeywell, (PREIS - Prototype Engineering Information
System), "Engineering Process Enactment: Requirements of Environment Frameworks",
AIAA Computing in Aerospace 8, October, 1991.

Describes modeling and enacting processes with PREIS

G.6.8 SFINX

Bux, G, Marzano, G., "Software Process Design: A "job function" approach in the context of
the SFINX project, AICA Annual Conference Proceedings, Bari, Italy, 1990.

This paper presents the general approach to software process modeling being
defined and adopted in the context of the SFINX project. A library of predefined
software process models together with rules and mechanisms for their
customization is described. The adopted technique for the functional description is
an "event-based" one (using the Event Graph language which is an extension of the
Petri net formalism). This event-based approach is derived from the "behavioral
approach" to software process modeling (see Williams).

G.6.9 TRIAD

Ashok, V., Ramanathan, J., Sarkar, S., and Venugopal, V., "Process Modeling in Software
Environments," Proceedings of the 4th International Software Process Workshop, ACM
SIGSOFT Software Engineering Notes, Vol. 14, No. 4, June 1989.

Description of TRIAD, an integrated project support environment driven by a
process model. Also describes the features of the process modeling language and
the execution of the process model.

Ramanathan, J., and Sarkar, S., "Providing Customized Assistance for Software Lifecycle
Approaches," IEEE, 1988.

This paper describes a tightly coupled environment architecture that uses
underlying representations of the software development process, the objects and
relationships being manipulated, the functionalities of the tools, and the roles of the

148

Appendix G: Bibliography

various project members to provide automated support for enforcing the discipline
required to ensure the success of large multi-person projects. The paper focuses on
features of a Conceptual Modeling Language (CML) for specifying such
representations. A prototype implementation has been constructed as part of the
TRIAD project at Ohio State University.

G.6.10 XSE

Bloor, Robin, The Software Tools' Software Tool," Software Development Monitor, March
1990.

A concise summary of the Virtual Software Factory (VSF) approach. VSF is
described as not being a CASE product at all but rather a software workshop that
can be used to build other tools.

Pocock, J.N., "The Case for Meta-CASE," paper available from Virtual Software Factory
(VSF) Ltd., Vienna, Virginia.

This paper argues that the reasons for failure of CASE tools and environments
to effectively address the "software crisis" derive from a mis-match between the
specialist information needs of CASE users and the information manipulation
provided by the tools, and from a lack of knowledge integration between the
different tools required in order to enable a full spectrum of functionality to be
provided over the whole development life-cycle. It argues that CASE can only be
made truly effective by the application of a technology which allows the tools to be
tailored for specific information environments. The terms "meta-CASE" is used to
refer to the ability to build a CASE environment specifically tailored to the needs of
a user organization, in terms of both standards and practices. A modeling based
meta-CASE tool, VSF, is described as an effective way of enabling the rapid
development and evolution of commercial quality CASE tools.

Pocock, J.N., "VSF and its Relationship to Open Systems and Standard Repositories," paper
available from Virtual Software Factory (VSF) Ltd., Vienna, Virginia.

In this paper, the nature of the requirement for an open system approach to
CASE tools and the relative roles of standard repositories and specialist "point"
tools in such an environment is discussed. How the VSF facilities can be used to
support the open system approach is outlined.

Pocock, J.N., "Frameworks and Tools for the Integration of Models," paper available from
Virtual Software Factory (VSF) Ltd., Vienna, Virginia.

The fundamental problem associated with the provision of computer
assistance to enterprise modeling as a whole, is the ability to compose multiple
modeling paradigms in such a way as to allow the different models to interact
without causing excessive information management load on either the support
system itself or its users. VSF's facilities for formal definition have been validated

149

Software Technology Support Center

for 25 or more different combinations of modeling techniques. How this can be
accomplished using the VSF system is described.

150

Appendix G: Bibliography

G.7 General Process Resource Materials

Bowen, Thomas P., Wigle, G. and Tsai, J., "Specification of Software Quality Attributes:
Software Quality Evaluation Guidebook," RADC-TR-85-37, Rome Air Development Center,
Griffiss AFB, NY, February 1985.

Quality factors identified in this guidebook each represent an aspect of quality
that can be used to specify the types of qualities wanted in a particular product.
Thirteen quality factors (efficiency, integrity, reliability, survivability, usability,
correctness, maintainability, verifiability, expandability, flexibility, interoperability,
portability and reusability) are identified encompassing performance, design and
adaptation. These are presented along with the user concern that characterizes the
need for each type of quality.

Clark, Peter G., Bard, Crawford S., "Evaluation & Validation Guidebook Version 3.0,"
TASC No. TR-5234-4, Ada Joint Program Office, 14 February 1991

This guidebook provides information that will help users to assess Ada
Programming Support Environments (APSEs) and APSE components.

Clough, A.J., "Software Process Technology Analysis," CrossTalk, Number 34, June/July
1992.

Overview of software process technology maturity. August issue of CrossTalk
then speaks more specifically of modeling technology.

Feiler, P.H., and Humphrey, W.S., "Software Process Development and Enactment: Concepts
and Definitions," Technical Report SEI-92-TR-004, Software Engineering Institute,
Pittsburgh, PA,, copyright 1992 by Carnegie Mellon University.

This report includes descriptions of some basic "core" software process terms.
Its purpose is to provide a common communication framework for the software
process and to reflect the views and findings of leading software process
researchers.

IEEE Standard Glossary of Software Engineering Terminology (Approved September 23,
1982: IEEE Computer Society; approved August 9,1983: American National Standards
Institute), Copyright 1983 by The Institute of Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY.

Software engineering is an emerging field. New terms are continually being
generated, and new meanings are being adopted for existing terms. The Glossary
of Software Engineering Terminology was undertaken to document this vocabulary.
Its purpose is to identify terms currently used in software engineering and to
present the current meanings of these terms. It is intended to serve as a useful

151

Software Technology Support Center

reference for software engineers and for those in related fields and to promote
clarity and consistency in the vocabulary of software engineering. It is recognized
that software engineering is a dynamic area; thus the standard will be subject to
appropriate change as becomes necessary.

This glossary was prepared by the Terminology Task Group of the Software
Engineering Standards subcommittee of the Software Engineering Technical
Committee of the IEEE Computer Society.

NISTISEE Glossary, version 1.0, compiled and edited by the NISTISEE Working Group,
April 1991.

The National Institute of Standards and Technology (NIST) Integrated
Software Engineering Environments (ISEE) Working Group realized that there was
a need for the use of a common terminology to facilitate discussions between the
members of the working group. This effort represents an initial attempt to compile
and edit a list of terms to eventually serve as a comprehensive glossary for software
engineering environment activities. In several cases more than one definition is
presented for a term. The glossary is viewed as an evolutionary activity. Updates
are disseminated on an annual basis.

Proceedings from The Fifth Annual Software Technology Conference: Software - the Force
Multiplier, 19-23 April 1993.

Software process definition tutorial notes; various presentations in the areas
of process improvement, process modeling and process enactment..

STARS '91 Conference, Proceedings from the Process-Driven Development track,
December, 1991.

Notes from Track I, Process Driven Development: Process Driven
Development Vision, Strategies, and Achievements; Process concepts; Process
Asset Library; Experiment in Process Definition and Representation; Enacting the
software process; and Process measurement.

STARS '92 Conference, Proceedings from the Process-Driven Development track,
December, 1992.

Notes from Track 1, Process Driven Development: Process Driven
Development Objectives/Motivation, Process Assets and the Process Asset Library
(PAL), Process Definition and Modeling, Process Measurement, Experience in
Process Driven Development, Process Improvement Perspective, and Experience
with Automated Process Enactment.

152

Appendix H: Glossary and Acronyms

Appendix H - Glossary and Acronyms

153

Software Technology Support Center

H.l Glossary

The definitions listed here have been derived from the sources listed at the end of this appendix.

Arcadia Consortium - The Arcadia Consortium consists of a collection of separately funded,
informally coordinated research and development projects at the University of California at
Irvine (UCI), the University of Colorado at Boulder (UCB), the University of Massachusetts at
Amherst (UMass), Stanford University, Incremental Systems Corporation, and TRW Defense

Systems Group. This Consortium was formed in August 1987. The funding of these projects is

provided by the Advanced Research Projects Agency (ARPA), and is administered by the

National Science Foundation (NSF), and the Navy's Space and Naval Warfare Systems

Command (SPAWAR). The universities also have other sources of funding, and the

corporations have made internally funded investments in the work of the Arcadia Consortium.

Capability Maturity Level (SEI) - The Software Engineering Institute (SEI) at Carnegie
Mellon University has defined five distinct maturity levels (initial, repeatable, defined, managed
and optimizing) for categorizing the maturity of an organization's software processes.

Computer Aided Software Engineering (CASE) - Computer-Aided Software Engineering

identifies a sector of the computer software industry concerned with producing software
development environments and tools. The main components of a CASE product are individual

tools to aid the software developer or project manager during one or more phases of software

development (or maintenance).

Data Dictionary - A collection of entities used in a system together with attributes of those

entities.

DoD-STD-2167A - A US Department of Defense documentation and review standard for the

development of mission-critical software systems.

Enactment - The use of a formal process definition to carry out a process.

Entity Process Modeling - Entity process modeling is a structured graphical modeling approach
that offers a set of three distinct but interrelated viewpoints that can be used to define a system or
process: the functional view (often represented by data flow diagrams), the behavioral view

154

Appendix H: Glossary and Acronyms

(most often represented by state transition notation), and the structural/organizational view
(showing which entities perform specific activities in a system).

EUREKA Software Factory (ESF) Project- Over two hundred people spread across more than

twenty sites in five countries are involved in the ESF project. The companies involved represent
computer manufacturers, research institutions, CASE tool producers, and system developers. By

1991, halfway into the 10-year project, ESF has defined a reference architecture, completed the
first implementation of a supporting framework and various tools and tool prototypes, and has

undertaken several factory-integration experiments.

Framework - The infrastructure for tool integration. A product whose main role is to integrate a
set of CASE tools while providing little direct functionality of its own. A framework provides
the architectural basis of an environment and provides a set of services as a basis for

environment construction.

Integrated Project Support Environment (IPSE) - A software environment that connects
software tools, allows data to be freely interchanged, and makes it easy to manage project data.
An IPSE also contains tools dealing with project management aspects of the software life cycle.

Integration - The property of different components working well together. Specifically, having
varied CASE tools operated from a common user interface, sharing data, and accessing each

other's functions.

IST AR - An early integrated, language independent, commercially available project support
environment developed by Imperial Software Technology in London, England, based on a

"contractual" approach to software and system development.

KI-ShelI - (Knowledge-based Integration Shell): object-oriented, workflow-based product for

process modeling and computer enactment.

Life Cycle - The stages and processes through which software passes during its development and

operational use.

Management Information Systems (MIS) - A computer based system of processing and
organizing information - as distinguished from computer based systems which do not have a high

155

Software Technology Support Center

information content and concentrate more on non-informational objectives, (such as control, for

example).

MARVEL - A software engineering environment using rule-based languages to support process

definition.

MELMAC - MELMAC is an environment based on the execution of high-level Petri net

representation of software process models.

Method - A method is a sequence of specific steps taken to perform an activity. For example,

the activity of process modeling is accomplished using a particular method.

Methods are often performed using tools.

Methodology - A methodology is a collection of methods, rules, and postulates employed by a
discipline. A software development/maintenance methodology is often a life cycle model
customized by methods, techniques and tools.

Metric - Quantitative analysis values calculated according to a precise definition and used to
establish comparative aspects of development progress, quality assessment or choice of options.

Object-Oriented Analysis - Examination of a problem by modeling it as a group of interacting

objects.

PACT Project - The PACT project is part of the ESPRIT program and is partially funded by the
Commission for the European Communities. The PACT project members include Bull SA,
Eurosoft, GEC, Software Ltd., ICL, Olivetti, Siemens, Syseca, and Systems and Management

Petri Nets - A Petri net is a mathematically-based, graphical, state-oriented notation for

modeling dynamic and distributed software process activities.

Platform - Hardware architecture; particular model or family of computers.

Process - See Software Process.

Process Assessment - An appraisal, by a trained team of experienced software professionals, of

an organization's current software process.

156

Appendix H: Glossary and Acronyms

Process Assets - Life-cycle models, process descriptions, procedures, methods and other related
process documentation, including process components and component templates.

Process Asset Library (PAL) - A reuse library for software process assets being developed by

the SEI.

Process Definition - A partially ordered set of process steps that is enactable.

Process Enactment - The use of a formal process definition to guide and control the software

process.

Process-Driven Environment - An environment supporting the software process by promoting
a mutual assistance between a well-informed initiative engine and human developers. This level
of support emphasizes control goals.

Process-Supported Environment - Environment supports the software process mainly through

the invocation of tools from the SEE and possibly providing some process guidance.

Process Language - Process definition in which a software process is represented in the form of
a program, using programming-like languages, notations, and formalisms.

Process Model - An abstract representation of a process architecture, design, or definition.

Process Programming - The use of a process language to express a process definition.

Process Simulation - Execution of a process model; the activation of a process model's

dynamics.

Process Weaver - A product, developed by Cap Gemini in France, which allows software
process modeling and instantiation, and provides guidance to the user and support for interfacing

with CASE tools.

ProSLCSE - Software Engineering Environment which will provide support for process
definition (using its language VPML) and enactment when completed.

157

Software Technology Support Center

Real-Time - Immediate response (for example, systems that must provide instant response to
signals sent to them) - or any electronic operation that is performed in the same time frame as its

real-world counterpart.

Real-Time Structured Analysis - A specification approach and graphical notation to describe
the logical, physical, and behavior views of a real-time system.

Repository - In an environment, a database that defines and contains all of the information

relevant to the components manipulated within the system.

Rule-Based Systems - Reasoning systems built around set rules; computer programs or systems

that use rules to represent knowledge and consist of collections of antecedent-consequent rules.

Software Life Cycle Support Environment (SLCSE) - An SEE whose capabilities are
provided through a preliminary rule base. Minimal working capability exists. Pro-SLCSE has
largely superseded the work on SLCSE.

Software Engineering - The disciplined development and support of software using recognized

methods and tools that help assure the quality of the product and the efficiency of the process.

Software Engineering Environment (SEE) - A software based system which provides
automated support for the engineering of software systems and for the management of the

software process.

Software Process - A set of activities, methods, and practices that guide people in the production

of software.

Structured Analysis - A graphical language which can be used to build models - incorporating
data flow diagrams, data dictionaries, procedure logic representations, and data store structuring

techniques.

System Dynamics - A method which applies the principles and techniques of feedback control

systems to the construction of models.

TRIAD - Software Engineering Environment developed at Ohio State University which

supports process enactment using the language CML.

158

Appendix H: Glossary and Acronyms

Tool - An individual CASE tool which automates one individual, focused activity in the life-

cycle process.

Technology Insertion - The process by which an organization identifies, prepares for, acquires,

implements, and institutionalizes new technology.

159

Software Technology Support Center

H.2 Acronyms

ACC- Air Combat Command

ACPIN- Automated Computer Program Identification Number

AETC- Air Education Training Command

AFCC- Air Force Communication Command

AFMC- Air Force Material Command

AFOTEC ! - Air Force Operational Test and Evaluation Center

AFSC- Air Force Systems Command

AFSPACECOM - Air Force Space Command

AI- Artificial Intelligence

AJPO - Ada Joint Program Office

AMC - Air Mobility Command

ANSI - American National Standards Institute

APPL/A - Ada Process Programming Language based on Aspen (used in the Arcadia
project)

APSE - Ada Programming Support Environment

ARPA - Advanced Research Project Agency

ASCII - acronym for American Standard Code for Information Interchange. The ASCII
code allows a standard representation of text characters in electronic form.

ASEE - Assisted Software Engineering Environment

ASSET - Asset Source for Software Engineering Technology - a facility supplying
computer access to software reuse libraries, catalogs, and information via wide
area networks and telecommunications.

CAIS-A - Common APSE Interface Set, revision A

160

Appendix H: Glossary and Acronyms

CALS - Computer-Aided Acquisition and Logistics Support

CASE - Computer Aided Software Engineering

CEE - Customizable Engineering Environment (abbreviation used in long lists)

CIM - Corporate Information Management

CM - Configuration Management

CML - Conceptual Modeling Language (Process language used in the TRIAD
environment)

CMM - Capability Maturity Model

COTS - Commercial Off-The-Shelf

D - Tool/method supports process Definition (an abbreviation used in the long lists)

D/E - Tool/method supports process definition and enactment (abbreviations used in the
long lists)

DM - Supports Data Modeling (an abbreviation used in the long lists)

D/S - Tool/method supports process Definition and Simulation (an abbreviation used in
the long lists)

D/S/E - Tool/method supports process Definition, Simulation and Enactment (an
abbreviation used in the long lists)

DSF - Distributed System Factory

DoD - Department of Defense

DT - DeskTops, including Macintoshes and PCs (an abbreviation used in the long lists)

E - Tool/method support process Enactment (an abbreviation used in the long lists)

EAST - EUREKA Advanced Software Technology environment

EISE - Extendible Integration Support Environment

EPM - Tool/method supports Entity Process Modeling (an abbreviation used in the long
lists)

161

Software Technology Support Center

E/R - Entity Relationship

ESF - EUREKA Software Factory

ESIP - Embedded computer resources Support Improvement Program

ETVX - Entry-Task-Validation-Exit

F - Environment built on a Framework which supports enactment (an abbreviation
used in the process-driven environments long list)

FSPN - Formal Software Process Notation

GUI - Graphical User Interface

HFSP - Hierarchical and Functional Software Process description and enactment language

I-CASE - Integrated Computer-Aided Software Engineering

IDEF - Integrated DEFinition

IEEE - Institute of Electrical and Electronics Engineers

IMDE - Integrated Model Development Environment

IMIP - Industrial Modernization Incentive Program

IPSE - Integrated Project Support Environment

MBPA - Model-Based Process Assessment

MF - Mainframes (an abbreviation used in the long lists)

MIS - Management Information Systems

00 - Object-Oriented

PAL - Process Asset Library

PCTE - Portable Common Tool Environment

PDEE - Process Definition-generated Engineering Environment (an abbreviation used in
the long lists)

162

Appendix H: Glossary and Acronyms

PDSS - Post-Deployment Support System

PERT - Program Evaluation and Review Techniques

PML - Process Modeling Language

PN - Petri Nets (an abbreviation used in the long lists)

PPL - Process Programming Language (an abbreviation used in the long lists)

PREIS - PRototype Engineering Information System

RDD100 - Requirements Driven Development

RTSA - Real-Time Structured Analysis

S - Supports Simulation (an abbreviation used in the long lists)

SA Structured Analysis

S ADT - Structured Analysis and Design Technique

sec Software Control Center

SCE - Software Capability Evaluation

SD System Dynamics (an abbreviation used in the long lists)

SDSA - Software Development and Support Activities

SEE Software Engineering Environment

SEE/F - SEE/IPSE Frameworks supporting the creation of process-driven environments
(an abbreviation used in the long lists)

SEI Software Engineering Institute

SLCSE - Software Life Cycle Support Environment

SPMS - Software Process Management System

STARS - Software Technology for Adaptable, Reliable Systems

163

Sofiware Technology Support Center

STSC- Software Technology Support Center

TECH- Technical (an abbreviation used in the long lists to denote technical application
area)

TIS- Technical Information Sheets

TPDE- Non-customizable Turnkey Process-Driven Environment (an abbreviation used in
the long lists)

TQM- Total Quality Management

USAF- United States Air Force

VPML- Visual Process Modeling Language

VPL - Visual Programming Language

VSF - Virtual Software Factory

WS - Workstations, including computers classed as mini-computers (an abbreviation
used in the long lists)

References for definitions:

Feiler, PH., and Humphrey, W.S., "Software Process Development and Enactment: Concepts
and Definitions," Technical Report SEI-92-TR-004, Software Engineering Institute,
Pittsburgh, PA,, copyright 1992 by Carnegie Mellon University.

Hanrahan, R., Peterson, R., Peterson, J., and Barney, D., "Software Engineering Environment
Report," March 1992.

IDEF Users Group Members Guide, October 1993.

IEEE Standard Glossary of Software Engineering Terminology (Approved September 23,
1982: IEEE Computer Society; approved August 9,1983: American National Standards
Institute), Copyright 1983 by The Institute of Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY.

NISTISEE Glossary, version 1.0, compiled and edited by the NISTISEE Working Group,
April 1991.

Software Engineering Institute (SEI), Training Handout, "Glossary for 'An Integrated
Approach to Software Process Improvement'". Software Engineering Symposium, August
1993.

164

Appendix H: Glossary and Acronyms

NOTE: Acronyms are used so freely in product names that, to avoid an overly long list of
acronyms, product acronyms were not included unless that product had been referred to
explicitly in the report or appendix text.

165

Software Technology Support Center

(This page is intentionally left blank)

166

Appendix I: STSC Services & Information

Appendix I - STSC Services & Information

167

Software Technology Support Center

1.1 The Software Technology Support Center

The mission of the Software Technology Support Center (STSC) is to transition
technologies and exchange information to help DoD Software Development and Support
Activities continuously improve their software quality and life cycle productivity.

A planned approach is necessary for successful transition. In general,
transitioning effective practices, processes, and technologies consists of a series of activities
or events that occur between the time a person encounters a new idea and the daily use of that

idea. Conner and Patterson's Adoption Curve [Conner 82], shown in Figure G-l, illustrates

these activities.

After encountering a new process or technology, potential customers of that
technology increase their awareness of its usage, maturity, and application. If the process or
technology is promising, then customers try to better understand its strengths, weaknesses,
costs, and applications. These first activities in the Adoption Curve take a significant amount

of time.

Next, the customer evaluates and compares the processes and technologies that
show the most promise. To reduce the risk, customers usually try new processes or
technologies on a limited scale through beta tests, case studies, or pilot projects. A customer
then adopts processes or technologies that prove effective. Finally, refined processes and

technologies become essential parts of an organization's daily process (institutionalization).

168

Appendix I: STSC Services & Information

i i InstitutionaIization_^_

Adoption jr

j f
Trial Use •

Evaluation/

Understanding^/

Awareness^"^ 1
Contac^^ 1

"* " ► 1 Time "" |

Figure 1-1. Adoption Curve

Word processors are essential in most organization's daily operations. Yet, thirty

years ago they did not exist. The institutionalization of word processors in many
organizations followed a series of events similar to those identified in the Adoption Curve.

The STSC is researching and collecting information about technologies that will
reduce the time and resources it takes to become aware, understand, evaluate, test, try, and
adopt effective practices, processes, and technologies. The STSC has developed the
following objectives to accomplish its mission:

• Technology Evaluation
Identify, validate, classify, and evaluate effective processes and technologies.

• Information Exchange

169

Software Technology Siq>port Center

Facilitate the exchange of better software business practices, processes, and
technologies within the DOD.

♦ Insertion Projects
Analyze and improve processes, adopt new methodologies as needed, evaluate
and select effective tools, receive appropriate levels of training, and perform
pilot projects to try out and confirm the technology insertion efforts.

•STSC Associates
Develop STSC Associates who can infuse effective process and technology

improvements through the use of STSC products, services, and processes.

1.2 STSC Technology Transition Approach

This section describes the STSC's approach to meeting the objectives identified in

the previous section.

1.2.1 Technology Evaluation

The first technology transition objective involves identifying, validating, and
classifying processes, methods, and technologies that can potentially improve the quality or

productivity of software development and maintenance. Many organizations are so focused
on deadlines and customer needs that they lack the resources and time to thoroughly
investigate options for improvement, leaving them vulnerable to marketing hype. The STSC
has developed the infrastructure to provide information on all types of applicable
technologies. Product critiques, which are essentially brief evaluations from experienced
technology users, are collected. Quantitative evaluations, which are detailed, comparable,
and objective, are performed on the most promising tools, methods, or processes.

122 Information Exchange

This technology transition objective involves exposing potential customers to
available technologies and, conversely, customer requirements to technology developers.
Referring to the Adoption Curve, this objective focuses on contact, awareness, and
understanding. STSC products that accomplish this objective include CrossTalk (a monthly

770

Appendix I: STSC Services & Information

engineering journal), the annual Software Technology Conference, specific technology

reports, and electronic customer services.

L2.2.1 CrossTalk

Over 10,500 software professionals receive CrossTalk monthly. This publication

provides a forum for the exchange of ideas. Articles cover leading edge, state-of-the-art, and

state-of-the-practice processes and technologies in software engineering.

1.2.2.2 Software Technology Conference

The annual Software Technology Conference is held each April in Salt Lake City,
Utah. This conference brings together over 2,000 software professionals from government,
industry, and academia to share technology solutions and exchange ideas and information.

1.2.2.3 Technology Reports

STSC technology reports provide detailed information on specific software
engineering technologies; and this report is an example. The current list of reports include:

• Test Preparation, Execution, and Evaluation

• Documentation

• Project Management

• Software Cost Estimation

• Requirements Analysis and Design

• Reengineering

• Source Code Static Analysis

• Software Engineering Environments

171

Software Technology Support Center

These reports provide awareness and understanding of each topic in preparation
for evaluation and selection of corresponding technologies. Over 30,000 of these reports

have been distributed.

1.2.2.4 Electronic Customer Services

Along with the services mentioned above, the STSC also provides customers with
electronic access to information via Electronic Customer Services (ECS). ECS includes a
bulletin board system which is available to obtain additional information, leave messages,
add information, and confer electronically. In addition, a computerized database of practice,

process, and technology information is coming on-line. ECS can be accessed via the

INTERNET at address 137.241.33.1 or stscbbs.al.mil or by calling 801-774-6509 with

modem at 2400 or 9600 baud, 8 bit word, 1 stop bit, and no parity.

123 Technology Insertion Projects

STSC technology insertion projects are customer oriented projects that evaluate,
select, and pilot the use of new processes, methods, and technologies for a specific customer.
These projects can include process definition, process improvement, methodology insertion,
tool insertion, and development of a technology road map. Referring to the Adoption Curve,
Figure G-l, an insertion project helps cement understanding of a process or technology,
tailors an evaluation of the process or technology for the customer, and pilots the use of that
process or technology with appropriate levels of training. Customers move closer to
adoption of the process or technology through hands-on experience. It is important to try out
technology improvements in a pilot project to confirm that the technology is appropriate for
the organization and that the organization is ready and able to adopt the new technology.

1.2.4 STSC Associates

Fowler and Przybylinski [Fowler 88] propose that transitioning new technologies
from a developer to a consumer requires an advocate to push the technology and a receptor to
pull the technology into an organization. This concept is illustrated in Figure G-2.

Effective change comes from within the organization. The STSC Associates*

objective is to develop technology receptors within individual Air Force SDSAs. These
receptors and STSC Associates, are trained in the use of the STSC's information, products,

172

Appendix I: STSC Services & Information

and services to enhance their organization's ability to incorporate advanced practices,
processes, and technologies.

Figure 1-2. Transitioning Technology

Referring to the Adoption Curve in Figure G-l, STSC Associates complete the
trek to institutionalization. Associates coming from within the organization should be
politically astute and aware of internal organizational requirements. They have the highest
probability of influencing the adoption and daily use of effective business practices,
processes, and technologies.

13 Embedded Computer Resources Support Improvement Program
(ESIP)

The STSC operates out of the Ogden Air Logistics Center at Hill Air Force Base,
Utah, under the direction and guidance of the ESIP Steering Group. An Air Force program,
the ESIP has the goals of reducing the software backlog and increasing software quality and

173

Software Technology Support Center

productivity. Its mission is to provide an infrastructure to assist in the transitioning of
technology to support all categories of embedded computer systems throughout the

acquisition cycle and improve the readiness of Air Force weapon systems. ESIP is directed

by an Air Force program management directive (PMD3118) and is led by a major command
level steering group. The steering group had representation from the following organization:
AFMC, AFSPACECOM, USSTRATCOM, ACC, AFOTEC. The voting members of ESIP

are:

Col. Charles Fuller, DSN 458-2435, commercial 801-777-2435, fax DSN 458-9034

Capt Mike Helsabeck, DSN 576-8189, commercial 618-256-8189, fax DSN 576-8939

Capt. Jonathan Lues, DSN 787-2151, commercial 513-257-2151, fax DSN 787-0841

Maj. Barbara Nelson, DSN 692-5054, commercial 719-554-5054, fax DSN 692-3350

Capt. Sean O'Connell, DSN 271-3278, commercial 402-294-3278, fax DSN 271-1020

CapL Carl Scott, DSN 574-5700, commercial 804-764-5700, fax DSN 574-6060

Mr. Jeffrey Wiltse, DSN 246-5310, commercial 505-846-5310, fax DSN 246-5145

174

